首页> 外文OA文献 >A Middle-Out Modeling Strategy to Extend a Colon Cancer Logical Model Improves Drug Synergy Predictions in Epithelial-Derived Cancer Cell Lines
【2h】

A Middle-Out Modeling Strategy to Extend a Colon Cancer Logical Model Improves Drug Synergy Predictions in Epithelial-Derived Cancer Cell Lines

机译:扩展结肠癌逻辑模型的中间建模策略改善了上皮衍生的癌细胞系中的药物协同性预测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Cancer is a heterogeneous and complex disease and one of the leading causes of death worldwide. The high tumor heterogeneity between individuals affected by the same cancer type is accompanied by distinct molecular and phenotypic tumor profiles and variation in drug treatment response. In silico modeling of cancer as an aberrantly regulated system of interacting signaling molecules provides a basis to enhance our biological understanding of disease progression, and it offers the means to use computer simulations to test and optimize drug therapy designs on particular cancer types and subtypes. This sets the stage for precision medicine: the design of treatments tailored to individuals or groups of patients based on their tumor-specific molecular cancer profiles. Here, we show how a relatively large manually curated logical model can be efficiently enhanced further by including components highlighted by a multi-omics data analysis of data from Consensus Molecular Subtypes covering colorectal cancer. The model expansion was performed in a pathway-centric manner, following a partitioning of the model into functional subsystems, named modules. The resulting approach constitutes a middle-out modeling strategy enabling a data-driven expansion of a model from a generic and intermediate level of molecular detail to a model better covering relevant processes that are affected in specific cancer subtypes, comprising 183 biological entities and 603 interactions between them, partitioned in 25 functional modules of varying size and structure. We tested this model for its ability to correctly predict drug combination synergies, against a dataset of experimentally determined cell growth responses with 18 drugs in all combinations, on eight cancer cell lines. The results indicate that the extended model had an improved accuracy for drug synergy prediction for the majority of the experimentally tested cancer cell lines, although significant improvements of the model’s predictive performance are still needed. Our study demonstrates how a tumor-data driven middle-out approach toward refining a logical model of a biological system can further customize a computer model to represent specific cancer cell lines and provide a basis for identifying synergistic effects of drugs targeting specific regulatory proteins. This approach bridges between preclinical cancer model data and clinical patient data and may thereby ultimately be of help to develop patient-specific in silico models that can steer treatment decisions in the clinic.
机译:癌症是一种异质和复杂的疾病和全世界死亡原因之一。受相同癌症型影响的个体之间的高肿瘤异质性伴随着不同的分子和表型肿瘤谱和药物治疗反应的变异。在癌症的硅模型中,作为一种异常调节的交互信号传导分子系统为提高我们对疾病进展的生物学理解提供了依据,它提供了使用计算机模拟测试和优化特定癌症类型和亚型的药物治疗设计的方法。这使得精密药物阶段:根据其肿瘤特异性分子癌细胞对单个或患者组定制的治疗设计。在这里,我们通过包括来自覆盖结直肠癌的共有分子亚型的数据分析的多OMICS数据分析突出显示的组分,可以进一步提高相对大的手动策划逻辑模型。通过以途径为中心的方式进行模型扩展,按照模型分配到功能子系统,命名模块。所得到的方法构成了一个中间建模策略,其能够从分子细节的通用和中间水平的模型的数据驱动扩展,以更好地覆盖在特定癌症亚型中受影响的相关过程,包括183个生物实体和603个相互作用在它们之间,在不同尺寸和结构的25个功能模块中划分。我们测试了这种模型,以便能够正确预测药物组合协同效应,对抗在八种癌细胞系中具有18种药物的实验确定的细胞生长反应的数据集。结果表明,扩展模型对大多数实验测试的癌细胞系的药物协同性预测具有提高的准确性,尽管仍然需要模型的预测性能的显着改善。我们的研究表明了肿瘤数据如何驱动的中间方法对精制生物系统的逻辑模型可以进一步定制计算机模型以代表特定的癌细胞系,并为鉴定靶向特异性调节蛋白的药物的协同作用提供基础。这种方法在临床前癌症模型数据和临床患者数据之间桥接,从而可以有助于在可以在诊所转向治疗决策的硅模型中产生患者特异性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号