首页> 外文OA文献 >Evaluation of Supervised Machine Learning for Classifying Video Traffic
【2h】

Evaluation of Supervised Machine Learning for Classifying Video Traffic

机译:监督机器学习对视频流量分类的评估

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Operational deployment of machine learning based classifiers in real-world networks has become an important area of research to support automated real-time quality of service decisions by Internet service providers (ISPs) and more generally, network administrators. As the Internet has evolved, multimedia applications, such as voice over Internet protocol (VoIP), gaming, and video streaming, have become commonplace. These traffic types are sensitive to network perturbations, e.g. jitter and delay. Automated quality of service (QoS) capabilities offer a degree of relief by prioritizing network traffic without human intervention; however, they rely on the integration of real-time traffic classification to identify applications. Accordingly, researchers have begun to explore various techniques to incorporate into real-world networks. One method that shows promise is the use of machine learning techniques trained on sub-flows – a small number of consecutive packets selected from different phases of the full application flow. Generally, research on machine learning classifiers was based on statistics derived from full traffic flows, which can limit their effectiveness (recall and precision) if partial data captures are encountered by the classifier. In real-world networks, partial data captures can be caused by unscheduled restarts/reboots of the classifier or data capture capabilities, network interruptions, or application errors. Research on the use of machine learning algorithms trained on sub-flows to classify VoIP and gaming traffic has shown promise, even when partial data captures are encountered. This research extends that work by applying machine learning algorithms trained on multiple sub-flows to classification of video streaming traffic.Results from this research indicate that sub-flow classifiers have much higher and more consistent recall and precision than full flow classifiers when applied to video traffic. Moreover, the application of ensemble methods, specifically Bagging and adaptive boosting (AdaBoost) further improves recall and precision for sub-flow classifiers. Findings indicate sub-flow classifiers based on AdaBoost in combination with the C4.5 algorithm exhibited the best performance with the most consistent results for classification of video streaming traffic.
机译:在现实世界的网络中基于机器学习的分类器的操作部署已成为研究的重要领域,以支持Internet服务提供商(ISP)以及更广泛的网络管理员进行的自动化实时服务质量决策。随着Internet的发展,诸如互联网协议语音(VoIP),游戏和视频流等多媒体应用已变得司空见惯。这些流量类型对网络干扰很敏感,例如抖动和延迟。自动化的服务质量(QoS)功能可通过对网络流量进行优先级分配而无需人工干预,从而在一定程度上减轻了负担;但是,它们依靠实时流量分类的集成来识别应用程序。因此,研究人员已开始探索各种技术并入到现实世界的网络中。一种显示出希望的方法是使用在子流上训练的机器学习技术,子流是从整个应用程序流的不同阶段中选择的少量连续数据包。通常,对机器学习分类器的研究基于源自全部流量的统计信息,如果分类器遇到部分数据捕获,则这可能会限制其有效性(召回率和精度)。在实际网络中,部分数据捕获可能由分类器的计划外重新启动/重新启动或数据捕获功能,网络中断或应用程序错误引起。对使用在子流上训练的机器学习算法进行分类以对VoIP和游戏流量进行分类的研究显示出了希望,即使遇到部分数据捕获也是如此。这项研究通过将在多个子流上训练的机器学习算法应用于视频流流量的分类来扩展工作,这项研究的结果表明,与全流分类器相比,子流分类器具有更高,更一致的召回率和精度。交通。此外,集成方法的应用,特别是装袋和自适应增强(AdaBoost),进一步提高了子流分类器的查全率和准确性。研究结果表明,基于AdaBoost与C4.5算法结合的子流分类器表现出最佳的性能,并且对视频流流量的分类具有最一致的结果。

著录项

  • 作者

    Taylor Farrell R.;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号