首页> 外文OA文献 >Adaptive Layered Approach using Machine Learning Techniques with Gain Ratio for Intrusion Detection Systems
【2h】

Adaptive Layered Approach using Machine Learning Techniques with Gain Ratio for Intrusion Detection Systems

机译:自适应分层方法采用机器学习技术具有用于入侵检测系统的增益比

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Intrusion Detection System (IDS) has increasingly become a crucial issue forcomputer and network systems. Optimizing performance of IDS becomes animportant open problem which receives more and more attention from the researchcommunity. In this work, A multi-layer intrusion detection model is designedand developed to achieve high efficiency and improve the detection andclassification rate accuracy .we effectively apply Machine learning techniques(C5 decision tree, Multilayer Perceptron neural network and Na"ive Bayes)using gain ratio for selecting the best features for each layer as to usesmaller storage space and get higher Intrusion detection performance. Ourexperimental results showed that the proposed multi-layer model using C5decision tree achieves higher classification rate accuracy, using featureselection by Gain Ratio, and less false alarm rate than MLP and na"ive Bayes.Using Gain Ratio enhances the accuracy of U2R and R2L for the three machinelearning techniques (C5, MLP and Na"ive Bayes) significantly. MLP has highclassification rate when using the whole 41 features in Dos and Probe layers.
机译:入侵检测系统(IDS)越来越成为计算机和网络系统的重要问题。优化ID的性能变为动漫的开放问题,从研究社会中获得了越来越多的关注。在这项工作中,设计了一种多层入侵检测模型,开发用于实现高效率,并提高检测和Classify速率精度。我们有效地应用了使用增益的机器学习技术(C5决策树,多层的Perceptron神经网络和Na “Ive Bayes)用于选择每个层的最佳功能的比率,以使用MALLER存储空间并获得更高的入侵检测性能。我们的实验结果表明,使用C5ECision树的建议的多层模型使用增益比的特点,较少的分类率准确度,较少的误报率比MLP和NA +“IVE贝叶斯。增益比率提高了U2R和R2L对三种机械师学习技术(C5,MLP和NA ”IVE Bayes)的准确性。MLP在使用整个41个功能时具有高分性率和探针层。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号