首页> 外文OA文献 >A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images
【2h】

A Distributed Parallel Algorithm Based on Low-Rank and Sparse Representation for Anomaly Detection in Hyperspectral Images

机译:基于低级别和稀疏表示的分布式并行算法在高光谱图像中的异常检测中的稀疏表示

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Anomaly detection aims to separate anomalous pixels from the background, and has become an important application of remotely sensed hyperspectral image processing. Anomaly detection methods based on low-rank and sparse representation (LRASR) can accurately detect anomalous pixels. However, with the significant volume increase of hyperspectral image repositories, such techniques consume a significant amount of time (mainly due to the massive amount of matrix computations involved). In this paper, we propose a novel distributed parallel algorithm (DPA) by redesigning key operators of LRASR in terms of MapReduce model to accelerate LRASR on cloud computing architectures. Independent computation operators are explored and executed in parallel on Spark. Specifically, we reconstitute the hyperspectral images in an appropriate format for efficient DPA processing, design the optimized storage strategy, and develop a pre-merge mechanism to reduce data transmission. Besides, a repartitioning policy is also proposed to improve DPA’s efficiency. Our experimental results demonstrate that the newly developed DPA achieves very high speedups when accelerating LRASR, in addition to maintaining similar accuracies. Moreover, our proposed DPA is shown to be scalable with the number of computing nodes and capable of processing big hyperspectral images involving massive amounts of data.
机译:异常检测旨在将异常像素分开来自背景,并且已成为远程感测的高光谱图像处理的重要应用。基于低级别和稀疏表示(LRASR)的异常检测方法可以精确地检测异常像素。然而,随着高光谱图像储存库的大量增加,这种技术消耗了大量时间(主要是由于涉及的大量的矩阵计算)。在本文中,我们通过在MapReduce模型方面重新设计LRASR的关键操作员提出了一种新的分布式并行算法(DPA),以加速LRASR在云计算架构上。独立的计算运算符在火花上并行执行和执行。具体地,我们以适当的格式重新设计高光谱图像以进行高效的DPA处理,设计优化的存储策略,并开发预先合并的机制以减少数据传输。此外,还提出了重新分配政策来提高DPA的效率。我们的实验结果表明,除了保持类似的精度外,新开发的DPA还可以在加速LRASR时实现非常高的加速。此外,我们所提出的DPA被证明可与计算节点的数量进行缩放,并且能够处理涉及大量数据的大超光谱图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号