首页> 外文OA文献 >δ-Generalized Labeled Multi-Bernoulli Simultaneous Localization and Mapping with an Optimal Kernel-Based Particle Filtering Approach
【2h】

δ-Generalized Labeled Multi-Bernoulli Simultaneous Localization and Mapping with an Optimal Kernel-Based Particle Filtering Approach

机译:Δ-广泛化的标记多Bernoulli同时定位和基于最优内核的粒子过滤方法的映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Under realistic environmental conditions, heuristic-based data association and map management routines often result in divergent map and trajectory estimates in robotic Simultaneous Localization And Mapping (SLAM). To address these issues, SLAM solutions have been proposed based on the Random Finite Set (RFS) framework, which models the map and measurements such that the usual requirements of external data association routines and map management heuristics can be circumvented and realistic sensor detection uncertainty can be taken into account. Rao−Blackwellized particle filter (RBPF)-based RFS SLAM solutions have been demonstrated using the Probability Hypothesis Density (PHD) filter and subsequently the Labeled Multi-Bernoulli (LMB) filter. In multi-target tracking, the LMB filter, which was introduced as an efficient approximation to the computationally expensive δ -Generalized LMB ( δ -GLMB) filter, converts its representation of an LMB distribution to δ -GLMB form during the measurement update step. This not only results in a loss of information yielding inferior results (compared to the δ -GLMB filter) but also fails to take computational advantages in parallelized implementations possible with RBPF-based SLAM algorithms. Similar to state-of-the-art random vector-valued RBPF solutions such as FastSLAM and MH-FastSLAM, the performances of all RBPF-based SLAM algorithms based on the RFS framework also diverge from ground truth over time due to random sampling approaches, which only rely on control noise variance. Further, the methods lose particle diversity and diverge over time as a result of particle degeneracy. To alleviate this problem and further improve the quality of map estimates, a SLAM solution using an optimal kernel-based particle filter combined with an efficient variant of the δ -GLMB filter ( δ -GLMB-SLAM) is presented. The performance of the proposed δ -GLMB-SLAM algorithm, referred to as δ -GLMB-SLAM2.0, was demonstrated using simulated datasets and a section of the publicly available KITTI dataset. The results suggest that even with a limited number of particles, δ -GLMB-SLAM2.0 outperforms state-of-the-art RBPF-based RFS SLAM algorithms.
机译:在现实的环境条件下,基于启发式的数据关联和地图管理例程通常导致机器人同时定位和映射(SLAM)中的不同地图和轨迹估计。为了解决这些问题,已经基于随机有限组(RFS)框架提出了SLAM解决方案,该框架模拟了地图和测量,使得外部数据关联例程和地图管理启发式的通常要求可以被规避和现实的传感器检测不确定性被考虑在内。已经使用概率假设密度(PHD)过滤器和随后标记的多Bernoulli(LMB)滤波器进行了基于RAO黑白滤波器(RBPF)的RFS SLAM解决方案。在多目标跟踪中,被引入的LMB滤波器作为计算昂贵的Δ-一成本的LMB(Δ-GLMB)滤波器的有效近似,将其在测量更新步骤期间将其LMB分布的表示LMB分布转换为ΔGMB形式。这不仅导致损失产生较差结果的信息(与ΔGLMB滤波器相比)而且还不能在基于RBPF的SLAM算法中采用并行化实现中的计算优势。类似于最先进的随机矢量值RBPF解决方案,如Fastslam和MH-Fastslam,基于RFS框架的所有基于RBPF的SLAM算法的性能也因随机抽样方法而随着时间的推移而导致的地面真理,它仅依靠控制噪声方差。此外,由于粒子简并,该方法失去了粒子多样性并随时间发散。为了缓解该问题并进一步提高地图估计的质量,提出了使用最佳核的粒子滤波器与Δ-gLMB滤波器的有效变体组合的基于核的粒子滤波器(Δ-GLMB-SLAM)的基于核的粒子过滤器的SLAM解决方案。使用模拟数据集和公开可用的基蒂数据集的一部分说明了所提出的Δ-glMB-SLAM算法的性能。结果表明,即使具有有限数量的粒子,Δ-GLMB-SLAM2.0优于最先进的RBPF的RFS SLAM算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号