首页> 外文OA文献 >Wide band gap materials and devices for NOx, H2 and O2 gas sensing applications
【2h】

Wide band gap materials and devices for NOx, H2 and O2 gas sensing applications

机译:用于NOx,H2和O2气体传感应用的宽带隙材料和设备

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this thesis, field effect gas sensors (Schottky diodes, MOS capacitors,and MOSFET transistors) based on wide band gap semiconductors like siliconcarbide (SiC) and gallium nitride (GaN), as well as resistive gas sensorsbased on indium oxide (In2O3), have been developed for the detection ofreducing gases (H2, D2) and oxidising gases (NOx, O2). The development ofthe sensors has been performed at the Institute for Micro- andNanoelectronic, Technical University Ilmenau in co-operation with (GE)General Electric Global Research (USA) and Umwelt-Sensor-Technik GmbH(Geschwenda). Chapter 1: serves as an introduction into the scientificfields related to this work. The theoretical fundamentals of solid-stategas sensors are provided and the relevant properties of wide band gapmaterials (SiC and GaN) are summarized. In chapter 2: The performanceof Pt/GaN Schottky diodes with different thickness of the catalytic metalwere investigated as hydrogen gas detectors. The area as well as thethickness of the Pt were varied between 250 × 250 µm2 and 1000 × 1000 µm2,8 and 40 nm, respectively. The response to hydrogen gas was investigated independence on the active area, the Pt thickness and the operatingtemperature for 1 vol.% hydrogen in synthetic air. We observed asignificant increase of the sensitivity and a decrease of the response andrecovery times by increasing the temperature of operation to about 350°Cand by decreasing the Pt thickness down to 8 nm. Electron microscopy of themicrostructure showed that the thinner platinum had a higher grain boundarydensity. The increase in sensitivity with decreasing Pt thickness points tothe dissociation of molecular hydrogen on the surface, the diffusion ofatomic hydrogen along the platinum grain boundaries and the adsorption ofhydrogen at the Pt/GaN interface as a possible mechanism of sensinghydrogen by Schottky diodes. The response to deuterium D2, NOx, and O2of metal-oxide-semiconductor (MOS) and metal-metaloxide-oxide-semiconductor (MMOOS) structures with rhodium (Rh) gate wereinvestigated in dependence on the operating temperature and gas partialpressures was investigated in chapter 3. The response of the sensor wasmeasured as a shift in the capacitance-voltge (C-V) curve along the voltageaxis. Positive and negative flat-band voltage shifts up to 1 V wereobserved for oxidizing and reducing gases, respectively. Depending on thetype of insulator that is chosen, differences in the sensitivity of thesensor were observed. In chapter 4: The performance of SiC-based fieldeffect transistors (FETs) with different gate materials (mixture of metaloxides: indium oxide and tin oxide (InxSnyOz), indium oxide and vanadiumoxide (InxVyOz), as well as mixtures of metal oxides with metal additives)were investigated as NOx, O2, and D2 gas detectors. The response to thesegases was investigated in dependence on the operating temperature and gaspartial pressures. The composition and microstructure of the sensing gateelectrode are the key parameters that influence the sensing mechanism, andhence key performance parameters: sensitivity, selectivity, and responsetime. By choosing the appropriate temperature and catalyst material (gatematerial), devices that are significantly sensitive to certain gases may berealized. In addition, the temperature of maximum response varies dependenton the gas species being measured. This information, along with a carefulchoice of catalyst (gate material) can be used to enhance deviceselectivity. In chapter 5: Polycrystalline and nano-structured In2O3thin films were investigated with the aim to obtain information about theirNOx and O2 gas sensing properties. The response to these gases wasinvestigated in dependence on the operating temperature and gas partialpressures. The analysis in the presence of different partial pressures ofNOx has shown that both thin films are able to detect nitrogen oxide, buttheir responses exhibit different characteristics. In particular,nano-structured In2O3 thin films were found to have the higher response toNOx. This is most probably due to the enlarged overall active surface areaof the sensing layer as a consequence of the small grain size (highersurface to volume ratio) so that the relative interactive surface area islarger, and the density of charged carriers per volume is higher. We havefound that reducing the grain size of the sensing material to the ~10 nmregime can have a substantial effect on performance. The optimum detectiontemperatures of the nano-structured In2O3 occur in the range of 100-175°Cfor NOx considering the sensitivity as well as the response time. In thisrange of temperatures the response to O2 is very low indicating that thesensor is very suitable for selective detection of NOx at low temperaturesIn addition, nano-structured In2O3 thin films were found to be moresuitable to be used in the field of application for detecting low partialpressures. Chapter 6: offers conclusions of the current work. In thischapter we compare also all studied gas sensors according to theirsensitivity, selectivity, and response time and then we compare them withthe related works by other authors available in the scientific literature.
机译:本文主要研究基于碳化硅(SiC)和氮化镓(GaN)等宽带隙半导体的场效应气体传感器(肖特基二极管,MOS电容器和MOSFET晶体管),以及基于氧化铟(In2O3)的电阻式气体传感器,已开发出用于检测还原性气体(H2,D2)和氧化性气体(NOx,O2)的方法。传感器的开发已经在(Ilmenau)工业大学微纳电子研究所与(GE)通用电气全球研究(美国)和Umwelt-Sensor-Technik GmbH(Geschwenda)合作进行。第1章:介绍与此工作相关的科学领域。提供了固态气体传感器的理论基础,并总结了宽带隙材料(SiC和GaN)的相关性能。在第二章:研究了不同厚度的催化金属的Pt / GaN肖特基二极管的性能,作为氢气检测器。 Pt的面积和厚度分别在250×250 µm2和1000×1000 µm2、8和40 nm之间变化。研究了氢气对活性气体的响应,Pt厚度和合成空气中1 vol。%氢气的工作温度的独立性。我们观察到灵敏度的显着提高,并且通过将操作温度提高到约350°C并通过将Pt厚度降低到8 nm降低了响应和恢复时间。电子显微组织表明,较薄的铂具有较高的晶界密度。灵敏度随着Pt厚度的减小而增加,这表明表面上的氢分子解离,原子氢沿铂晶界的扩散以及Pt / GaN界面上氢的吸附是肖特基二极管感测氢的可能机理。本章研究了金属氧化物半导体(MOS)和金属铑氧化物(Rh)门对氘D2,NOx和O2的响应,具体取决于工作温度和气体分压。 3.传感器的响应被测量为电容-电压(CV)曲线沿电压轴的位移。对于氧化和还原气体,分别观察到高达1 V的正和负平带电压偏移。根据所选绝缘体的类型,观察到传感器灵敏度的差异。第4章:具有不同栅极材料(金属氧化物的混合物:氧化铟和氧化锡(InxSnyOz),氧化铟和钒氧化物(InxVyOz)以及金属氧化物与金属的混合物)的SiC基场效应晶体管(FET)的性能作为NOx,O2和D2气体检测器进行了研究。根据操作温度和气体分压研究了对这些气体的反应。感应栅电极的组成和微观结构是影响感应机制的关键参数,因此关键性能参数包括:灵敏度,选择性和响应时间。通过选择适当的温度和催化剂材料(门材料),可以实现对某些气体非常敏感的设备。另外,最大响应温度取决于所测量的气体种类。此信息以及精心选择的催化剂(栅极材料)可用于增强设备的选择性。在第5章中,研究了多晶和纳米结构的In2O3薄膜,目的是获得有关其NOx和O2气敏特性的信息。根据工作温度和气体分压研究了对这些气体的响应。在存在不同的NOx分压的情况下进行的分析表明,两种薄膜都能够检测氮氧化物,但是它们的响应表现出不同的特性。特别是,发现纳米结构的In2O3薄膜对NOx的响应更高。这很可能是由于较小的晶粒尺寸(较高的表面体积比)导致传感层的总有效表面积增大,因此相对交互表面积较大,并且每体积的带电载流子密度更高。我们已经发现,将传感材料的晶粒尺寸减小到约10 nmregime会对性能产生重大影响。考虑到灵敏度和响应时间,对于NOx,纳米结构In2O3的最佳检测温度在100-175°C的范围内。在此温度范围内,对O2的响应非常低,表明该传感器非常适合在低温下选择性检测NOx发现纳米结构的In 2 O 3薄膜更适合用于检测低分压的应用领域。第6章提供了当前工作的结论。在本章中,我们还根据灵敏度,选择性和响应时间对所有已研究的气体传感器进行了比较,然后将它们与科学文献中其他作者的相关工作进行了比较。

著录项

  • 作者

    Majdeddin Ali;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号