首页> 美国卫生研究院文献>Micromachines >Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices
【2h】

Energy Band Gap Investigation of Biomaterials: A Comprehensive Material Approach for Biocompatibility of Medical Electronic Devices

机译:生物材料能带隙研究:医用电子设备生物相容性的综合材料方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Over the past ten years, tissue engineering has witnessed significant technological and scientific advancements. Progress in both stem cell science and additive manufacturing have established new horizons in research and are poised to bring improvements in healthcare closer to reality. However, more sophisticated indications such as the scale-up fabrication of biological structures (e.g., human tissues and organs) still require standardization. To that end, biocompatible electronics may be helpful in the biofabrication process. Here, we report the results of our systematic exploration to seek biocompatible/degradable functional electronic materials that could be used for electronic device fabrications. We investigated the electronic properties of various biomaterials in terms of energy diagrams, and the energy band gaps of such materials were obtained using optical absorption spectroscopy. The main component of an electronic device is manufactured with semiconductor materials (i.e., E between 1 to 2.5 eV). Most biomaterials showed an optical absorption edge greater than 2.5 eV. For example, fibrinogen, glycerol, and gelatin showed values of 3.54, 3.02, and 3.0 eV, respectively. Meanwhile, a few materials used in the tissue engineering field were found to be semiconductors, such as the phenol red in cell culture media (1.96 eV energy band gap). The data from this research may be used to fabricate biocompatible/degradable electronic devices for medical applications.
机译:在过去的十年中,组织工程技术和科学取得了重大进步。干细胞科学和增材制造的进步为研究奠定了新的视野,并有望使医疗保健方面的改进更接近现实。然而,更复杂的适应症例如生物结构(例如,人体组织和器官)的放大制造仍需要标准化。为此,生物相容性电子器件可能有助于生物制造过程。在这里,我们报告了我们系统探索的结果,以寻求可用于电子设备制造的生物相容性/可降解功能性电子材料。我们根据能量图研究了各种生物材料的电子性质,并使用光学吸收光谱法获得了这些材料的能带隙。电子设备的主要组件由半导体材料(即介于1到2.5 eV之间的E)制成。大多数生物材料显示出大于2.5 eV的光吸收边缘。例如,纤维蛋白原,甘油和明胶的值分别为3.54、3.02和3.0 eV。同时,发现组织工程领域中使用的一些材料是半导体,例如细胞培养基中的酚红(能带隙为1.96 eV)。这项研究的数据可用于制造医疗用途的生物相容性/可降解电子设备。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号