首页> 外文OA文献 >Three-Dimensional Patterning Using Ultraviolet Curable Nanoimprint Lithography.
【2h】

Three-Dimensional Patterning Using Ultraviolet Curable Nanoimprint Lithography.

机译:使用紫外线可固化纳米压印光刻的三维图案化。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Although a large number of works on nanoimprint lithography (NIL) techniques have been reported, the the ability for three-dimensional (3-D) patterning using NIL has not been fully addressed in terms of the mold fabrication and imprint processes. Patterning 3-D and multilevel features are important because they eliminate multiple steps and complex interlevel alignments in the nanofabrication process. The 3-D and multilevel mold design and fabrication, and imprint processes have been studied and investigated in this research work.In the UV-NIL technique, a transparent mold with micro/nanostructure patterns on its surface is allowed to be replicated on UV curable polymer without the need of high applied pressure or temperature. UV-NIL has the potential to fabricate micro/nanostructures with high resolution, high reproducibility, low cost, high throughput and is capable of 3-D patterning. This research focuses on two aspects; the development of mold making and imprint processes. In the process of making a master mold, an EBL technique was employed for writing patterns on e-beam resists. PMMA positive resist was used for 2-D patterning and ma-N2403 negative resist from Microresist Technology was used for 3-D patterning. After being developed, the 3-D mold pattern was transferred onto quartz substrate using a single-step reactive ion etching (RIE) technique.A number of challenging issues such as surface charging, electron scattering and proximity effects surfaced during the EBL pattern writing on insulating and transparent molds. A number of new approaches have been developed for suppressing the charging effects in the 2-D and 3-D patterning. Using thin metallic coating on the quartz substrates or on top of the resist, or conductive polymer coating using PEDOT/PSS on top of the resist has demonstrated excellent results in a 2-D structure with a high aspect-ratio of 1:10 and feature sizes down to 60 nm. In 3-D patterning, two approaches have been followed; the critical energy method and/or a top coating of conductive polymer (PEDOT/PSS) layer. Isolated 3-D structures with feature sizes down to 500 nm were successfully fabricated using the first method while by using the second method, dense 3-D structures patterns with feature sizes down to 300 nm, on 400 nm pitch have been demonstrated.In UV-NIL, the surface roughness Rq(rms) should be less than 5 nm, which is important for replicating optical structures and devices. In this work, the RIE process been optimized to yield 2 nm roughness on a patterned quartz surface. This was achieved by optimizing the RIE process pressure of below 6 mTorr.The other part of this thesis is on replication or imprinting of 2-D and 3-D structures. In the process of replicating the master mold profiles, the imprint processes were carried out using a vacuum operated manual imprint tool which was attached to a Mask Aligner UV illumination system. In 2-D imprinting, resist sticking on the vertical side wall was the main issue, especially on high aspect ratio structures. Meanwhile in 3-D imprinting, the imprint results have shown good reproducibility in up to 15 imprint cycles, where the issue of Ormocomp soft/daughter mold cracking after long UV exposure had limited the repetition of the imprint cycles.In this thesis, the 2-D and 3-D resist patterning on insulating substrates using the EBL technique have been demonstrated with the assistance of a number of developed charge suppression methods. Single-step RIE pattern transfer onto quartz substrates with surface roughness below 5nm has been achieved. Replication of 3-D and multilevel structures reliably make the UV-NIL technique suitable for future applications such as surface texturing, optical devices and many other complex structures including MEMS.
机译:尽管已经报道了有关纳米压印光刻(NIL)技术的大量工作,但是就模具制造和压印工艺而言,尚未完全解决使用NIL进行三维(3-D)图案化的能力。图案化3-D和多级特征非常重要,因为它们消除了纳米加工过程中的多个步骤和复杂的层间对齐。在这项研究工作中,对3-D和多层模具的设计和制造以及压印过程进行了研究和研究。在UV-NIL技术中,允许在其表面上具有微/纳米结构图案的透明模具复制到UV固化剂上不需要高施加压力或高温的聚合物。 UV-NIL具有制造具有高分辨率,高重现性,低成本,高产量的微/纳米结构的潜力,并且能够进行3D图案化。这项研究集中在两个方面。模具制造和压印工艺的发展。在制作母模的过程中,采用了EBL技术在电子束抗蚀剂上书写图案。将PMMA正抗蚀剂用于2-D图案化,并将Microresist Technology的ma-N2403负抗蚀剂用于3-D图案化。显影后,使用一步反应离子刻蚀(RIE)技术将3-D模具图案转移到石英基板上,在EBL图案写入过程中出现了许多具有挑战性的问题,例如表面电荷,电子散射和邻近效应绝缘和透明模具。已经开发出许多新的方法来抑制2-D和3-D图案化中的充电效应。在石英基板上或抗蚀剂顶部使用薄金属涂层,或在抗蚀剂顶部使用PEDOT / PSS进行导电聚合物涂层,在具有高纵横比为1:10的二维结构中显示出优异的效果,并且具有以下特点尺寸低至60 nm。在3-D图案化中,采用了两种方法:临界能量法和/或导电聚合物的顶涂层(PEDOT / PSS)。使用第一种方法成功制造了特征尺寸低至500 nm的隔离3-D结构,而使用第二种方法成功地展示了特征尺寸低至300 nm,间距400 nm的致密3-D结构图案。 -NIL,表面粗糙度Rq(rms)应小于5 nm,这对于复制光学结构和器件很重要。在这项工作中,RIE工艺经过了优化,可以在图案化的石英表面上产生2 nm的粗糙度。这是通过将RIE工艺压力优化为低于6 mTorr来实现的。本文的另一部分是关于2-D和3-D结构的复制或印迹。在复制母模轮廓的过程中,压印过程是使用连接到Mask Aligner UV照明系统的真空手动压印工具进行的。在二维压印中,抗蚀剂粘附在垂直侧壁上是主要问题,尤其是在高纵横比结构上。同时,在3-D压印中,压印结果在多达15个压印循环中均显示出良好的可重复性,其中长时间暴露于紫外线下后Ormocomp的软/女儿模具开裂问题限制了压印循环的重复。本文中的2借助于许多已开发的电荷抑制方法,已经证明了使用EBL技术在绝缘基板上进行-D和3-D抗蚀剂构图。已经实现了将单步RIE图形转移到表面粗糙度低于5nm的石英衬底上的功能。 3D和多层结构的复制可靠地使UV-NIL技术适用于将来的应用,例如表面纹理,光学设备以及包括MEMS在内的许多其他复杂结构。

著录项

  • 作者

    Mohamed Khairudin;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号