首页> 外文OA文献 >Engineering a Fungal L-Arabinose Pathway Towards the Co-Utilization of Hemicellulosic Sugars for Production of Xylitol
【2h】

Engineering a Fungal L-Arabinose Pathway Towards the Co-Utilization of Hemicellulosic Sugars for Production of Xylitol

机译:设计真菌L-阿拉伯糖途径,共同利用半纤维素糖生产木糖醇

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The biosynthesis of value-added products has shown great promise in recent years due to the advances in molecular biology and protein engineering. Many advantages over chemical synthesis include high selectivity and specificity, increased yield, and function under milder conditions without the need for toxic metals, organic solvents, strong acids or bases, or high pressures and temperatures. However, naturally occurring enzymatic pathways are often times not particularly well suited towards obtaining high product yield due to the organism???s evolution not dependent on the production of such high levels of desired product. Xylitol is an attractive pentose sugar alcohol that has many applications in the food, pharmaceutical, and high-value based biochemical product industries. It is still, however, relatively expensive to produce, which prevents its economical integration into the marketplace. To expand the possible routes of xylitol synthesis, and provide a process which can utilize both hemicellulosic pentose sugars D-xylose and L-arabinose from renewable plant biomass as feed substrates, my thesis research focused on utilizing a fungal-derived biosynthetic pathway for production of xylitol. The pathway consists of two NADPH-dependent reductases, xylose reductase (XR) and L-xylulose reductase (LXR), and an NAD+-dependent L-arabinitol 4-dehydrogenase (LAD). The XR enzyme converts D-xylose directly to xylitol, while the three enzyme in tandem convert L-arabinose to xylitol. However, the cofactor imbalance presented with the pathway potentially makes nicotinamide regeneration difficult for production in vivo. After cloning and characterization of a highly active and stable NAD+-dependent L-arabinitol 4-dehydrogenase (LAD) from Neurospora crassa, subsequent engineering via rational design and directed evolution resulted in the isolation of the first known NADP+-dependent LAD enzyme. This novel engineered LAD was then introduced into the fungal xylitol pathway and expressed in a model organism, E. coli, and the effect of the cofactor specificity alteration was evaluated in the conversion of L-arabinose to xylitol. Further investigation of the cofactor balancing benefits were applied to xylitol dehydrogenase (XDH) for full redox balancing of the initial steps of the L-arabinose pathway, and investigations of the limiting steps in L-arabinose utilization conducted in S. cerevisiae and E. coli led to further proposed engineering of LAD.
机译:近年来,由于分子生物学和蛋白质工程学的进步,增值产品的生物合成已显示出广阔的前景。与化学合成相比,许多优点包括高选择性和特异性,增加的收率以及在温和条件下的功能,而无需使用有毒金属,有机溶剂,强酸或强碱,也不需要高压和高温。然而,由于生物体的进化不依赖于如此高水平的所需产物的产生,天然存在的酶促途径通常常常不特别适合于获得高产物产率。木糖醇是一种有吸引力的戊糖醇,在食品,制药和高价值生物化学产品行业中具有许多应用。然而,它的生产仍然相对昂贵,这妨碍了其经济地融入市场。为了扩大木糖醇合成的可能途径,并提供一种可以利用可再生植物生物质中的半纤维素戊糖D-木糖和L-阿拉伯糖作为饲料底物的方法,我的论文研究集中在利用真菌衍生的生物合成途径生产木糖醇。木糖醇。该途径由两种NADPH依赖性还原酶,木糖还原酶(XR)和L-木酮糖还原酶(LXR)以及NAD +依赖性L-阿拉伯糖醇4-脱氢酶(LAD)组成。 XR酶将D-木糖直接转化为木糖醇,而三种酶串联将L-阿拉伯糖转化为木糖醇。然而,与该途径有关的辅因子失衡可能使烟酰胺再生难以在体内产生。在克隆和鉴定了来自神经孢霉的高活性和稳定的NAD +依赖性L-阿拉伯糖醇4-脱氢酶(LAD)后,经过合理设计和定向进化的后续工程导致了第一个已知的NADP +依赖性LAD酶的分离。然后将这种新型工程改造的LAD引入真菌木糖醇途径,并在模型生物大肠杆菌中表达,并在L-阿拉伯糖向木糖醇的转化中评估辅因子特异性改变的影响。将辅助因子平衡益处的进一步研究应用于木糖醇脱氢酶(XDH),以完全氧化还原平衡L-阿拉伯糖途径的初始步骤,并研究在酿酒酵母和大肠杆菌中进行L-阿拉伯糖利用的限制步骤。导致了LAD的进一步拟议工程。

著录项

  • 作者

    Sullivan Ryan P.;

  • 作者单位
  • 年度 2009
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号