首页> 外文OA文献 >Accelerating adaptive ultrasound imaging algorithms by means of general-purpose computing on graphics processing units
【2h】

Accelerating adaptive ultrasound imaging algorithms by means of general-purpose computing on graphics processing units

机译:通过在图形处理单元上进行通用计算来加速自适应超声成像算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A rapid development in computer game technology and accompanying programminglanguages have recently provided researchers with small personal supercomputers,comprised in a single graphics processing unit (GPU). This immense rise incomputational capabilities and improved programmability are currently changinghow ultrasound imaging systems are designed. When researchers are exploring newalgorithms for ultrasound imaging, it is therefore important to keep the architectureof parallel accelerators like the GPU in mind. If a new complex algorithm is supposedto run in real time, it needs to fit the programmable and parallel pipeline of modernultrasound scanners.The aim of this study has been to investigate the possibility of utilizing GPUsfor advanced processing in an ultrasound imaging system. Among the investigatedproblems are both adaptive beamforming, adaptive visualization of ultrasoundvolumes, and ultrasound simulations. The presented problems have in common thatthey require parallel programming in order to reach real-time processing.In the first part of the thesis, the Capon adaptive beamformer is investigatedand implemented on a GPU for the application of real-time sonar (Paper I) andmedical ultrasound imaging (Paper II). Real-time frame rates are achieved for bothmodalities. Paper II also presents, for the first time, videos where the Caponbeamformer has been applied on loops of simulated and in vivo medical ultrasoundimages. In Paper III, we show that Capon beamforming does not provide shiftinvariantimaging in a real-time imaging setting. A method is then proposed thatimproves the shift-invariant property. Shift-invariant imaging is essential if the methodis ever to be used in practice.In paper Paper IV we propose an adaptive method for visualization of volumetriccardiac ultrasound images. The method is capable of removing noise that byconventional methods would have occluded cardiac tissue. This work also showsthat with modern GPUs it is possible to add advanced visualization methods to anultrasound imaging system and still have real-time performance.Finally, we investigate how GPUs can be utilized to accelerate ultrasoundsimulations (PaperV). The result of this work was a simulation program whereultrasound array geometries can be interactively drawn and where the resultingpressure field is simulated and visualized in real time.
机译:计算机游戏技术及其伴随的编程语言的飞速发展最近为研究人员提供了小型个人超级计算机,这些超级计算机包含在单个图形处理单元(GPU)中。这种计算能力的极大提高和改进的可编程性目前正在改变超声成像系统的设计方式。当研究人员探索超声成像的新算法时,重要的是要牢记并行加速器(如GPU)的体系结构。如果应该实时运行一种新的复杂算法,则它需要适合现代超声扫描仪的可编程和并行管线。本研究的目的是研究在超声成像系统中利用GPU进行高级处理的可能性。研究的问题包括自适应波束成形,超声体积的自适应可视化和超声仿真。提出的问题的共同点在于需要并行编程才能达到实时处理。论文的第一部分,研究了Capon自适应波束形成器并在GPU上实现,用于实时声纳(论文I)和医学应用。超声成像(论文II)。两种模式均实现了实时帧速率。论文II还首次展示了将Caponbeamformer应用于模拟和体内医学超声图像循环的视频。在论文III中,我们显示Capon波束成形在实时成像设置中不提供平移不变的磁化。然后提出了一种改善位移不变特性的方法。如果要在实践中使用该方法,则不变位移成像必不可少。在论文IV中,我们提出了一种自适应的方法来显示容积性心脏超声图像。该方法能够去除常规方法会阻塞心脏组织的噪声。这项工作还表明,使用现代GPU可以向超声成像系统中添加高级可视化方法,并且仍然具有实时性能。最后,我们研究如何利用GPU加速超声仿真(PaperV)。这项工作的结果是一个模拟程序,可以交互式绘制超声波阵列的几何形状,并实时模拟和可视化所产生的压力场。

著录项

  • 作者

    Åsen Jon Petter Helgesen;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号