首页> 美国政府科技报告 >Numerical Approximations for Stochastic Differential Games: The Ergodic Case
【24h】

Numerical Approximations for Stochastic Differential Games: The Ergodic Case

机译:随机微分对策的数值逼近:遍历情形

获取原文

摘要

The Markov chain approximation method is a widely used, relatively easy to use, and efficient family of methods for the bulk of stochastic control problems in continuous time, for reflected-jump-diffusion type models. It has been shown to converge under broad conditions, and there are good algorithms for solving the numerical problems, it the dimension is not too high. We consider a class of stochastic differential games with a reflected diffusion system model and ergodic cost criterion and where the controls for the two players are separated in the dynamics and cost function. It is shown that the value of the game exists and that the numerical method converges to this value as the discretization parameter goes to zero. The actual numerical method solves a stochastic game for a finite state Markov chain and ergodic cost criterion. The essential conditions are nondegeneracy and that a weak local consistency condition hold 'almost everywhere' for the numerical approximations, just as for the control problem.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号