首页> 美国政府科技报告 >Conditional Random People: Tracking Humans with CRFs and Grid Filters
【24h】

Conditional Random People: Tracking Humans with CRFs and Grid Filters

机译:条件随机人:使用CRF和网格过滤器跟踪人类

获取原文

摘要

We describe a state-space tracking approach based on a Conditional Random Field (CRF) model, where the observation potentials are learned from data. We find functions that embed both state and observation into a space where similarity corresponds to L1 distance, and define an observation potential based on distance in this space. This potential is extremely fast to compute and in conjunction with a grid-filtering framework can be used to reduce a continuous state estimation problem to a discrete one. We show how a state temporal prior in the grid-filter can be computed in a manner similar to a sparse HMM, resulting in real-time system performance. The resulting system is used for human pose tracking in video sequences.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号