首页> 外文期刊>Signal processing >3D Human motion tracking by exemplar-based conditional particle filter
【24h】

3D Human motion tracking by exemplar-based conditional particle filter

机译:通过基于示例的条件粒子滤波器进行3D人体运动跟踪

获取原文
获取原文并翻译 | 示例

摘要

3D human motion tracking has received increasing attention in recent years due to its broad applications. Among various 3D human motion tracking methods, the particle filter is regarded as one of the most effective algorithms. However, there are still several limitations of current particle filter approaches such as low prediction accuracy and sensitivity to discontinuous motion caused by low frame rate or sudden change of human motion velocity. Targeting such problems, this paper presents a full-body human motion tracking system by proposing exemplar-based conditional particle filter (EC-PF) for monocular camera. By introducing a conditional term with respect to exemplars and image data, dynamic model is approximated and used to predict current states of particles in prediction phase. In update phase, weights of particles are refined by matching images with projected human model using a set of features. This method retains advantages of classic particle filters while increases prediction accuracy by replacing the smooth motion model with exemplars-based dynamic model which constrains evolved particles within an area closer to true state. Therefore, tracking robustness to discontinuous motion is improved such as under conditions of sudden change in motion velocity or using low-frame rate cameras. To verify the effectiveness and efficiency of the proposed algorithm, a variety of datasets are selected for testing and the results are also compared with the state-of-the-art methods in this domain.
机译:由于3D人体运动跟踪的广泛应用,近年来受到越来越多的关注。在各种3D人体运动跟踪方法中,粒子滤波器被认为是最有效的算法之一。但是,当前的粒子滤波器方法仍然存在一些局限性,例如较低的预测精度和对由低帧频或人体运动速度的突然变化导致的不连续运动的敏感性。针对此类问题,本文提出了一种基于样机的单眼相机基于条件粒子滤波(EC-PF)的全身人体运动跟踪系统。通过引入关于示例和图像数据的条件项,可以对动态模型进行近似并用于预测处于预测阶段的粒子的当前状态。在更新阶段,通过使用一组功能将图像与投影的人体模型进行匹配来细化粒子的权重。该方法保留了经典粒子滤波器的优点,同时通过用基于示例的动态模型代替平滑运动模型来提高预测精度,该示例模型将动态粒子约束在更接近真实状态的区域内。因此,例如在运动速度突然变化或使用低帧率相机的情况下,提高了对不连续运动的跟踪鲁棒性。为了验证所提出算法的有效性和效率,选择了各种数据集进行测试,并将结果与​​该领域的最新方法进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号