首页> 外文会议>1st ACM workshop on vision networks for behaviour analysis 2008 >A Novel Fitting Algorithm using the ICP and the Particle Filters for Robust 3D Human Body Motion Tracking
【24h】

A Novel Fitting Algorithm using the ICP and the Particle Filters for Robust 3D Human Body Motion Tracking

机译:使用ICP和粒子滤波器进行鲁棒3D人体运动跟踪的新型拟合算法

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a novel fitting algorithm using the iterative closest point (ICP) registration algorithm and the particle filters for robust 3D human body motion tracking. We use the ICP registration algorithm that fits the 3D human body model to the 3D articulation data in a hierarchical manner. However, it often can not fit under the rapidly moving human body motion. To solve this problem, we combine the modified particle filter with the ICP algorithm. It can search the most appropriate motion parameters by using the observation model based on the surface normal vector and the binary valued function and the state transitional model based on the motion history information. Experimental results show that the proposed combined fitting algorithm provides accurate fitting performance and high convergence rate.
机译:本文提出了一种新颖的拟合算法,该算法使用迭代最近点(ICP)配准算法和粒子滤波器进行鲁棒的3D人体运动跟踪。我们使用ICP注册算法,该算法以分层方式将3D人体模型拟合到3D关节运动数据。但是,它往往无法适应快速移动的人体运动。为了解决这个问题,我们将改进的粒子滤波器与ICP算法结合在一起。它可以通过使用基于表面法线矢量和二值函数的观察模型以及基于运动历史信息的状态转换模型来搜索最合适的运动参数。实验结果表明,提出的组合拟合算法具有准确的拟合性能和较高的收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号