首页> 美国政府科技报告 >Building Predictive Human Performance Models of Skill Acquisition in a Data Entry Task
【24h】

Building Predictive Human Performance Models of Skill Acquisition in a Data Entry Task

机译:在数据录入任务中建立技能获取的预测人力绩效模型

获取原文

摘要

This paper presents a predictive model of a simple, but important, data entry task. The task requires participants to perceive and encode information on the screen, locate the corresponding keys for the information on different layouts of the keyboard, and enter the information. Since data entry is a central component in most human-machine interaction, a predictive model of performance will provide useful information that informs interface design and effectiveness of training. We created a cognitive model of the data entry task based on the ACT-R 5.0 architecture. The same model provided good fits to three existing data sets, which demonstrated the effects of fatigue with prolonged work, repetition priming, depth of processing, and the suppression of subvocal rehearsal. The model also makes predictions on how performance deteriorates with different delays after training, how different amounts of rehearsal during training affect retention, and how re-training helps retention of skills.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号