首页> 美国政府科技报告 >Precision Relative Positioning for Automated Aerial Refueling from a Stereo Imaging System.
【24h】

Precision Relative Positioning for Automated Aerial Refueling from a Stereo Imaging System.

机译:立体成像系统自动空中加油的精确相对定位。

获取原文

摘要

The United States Air Force relies upon aerial refueling to fulfill its missions. Unmanned aerial systems (UAS) and remotely piloted aircraft (RPA) do not currently have access to this capability due to the lack of an on-board pilot to safely maintain a refueling position. This research examines stereo vision for precision relative navigation in order to accomplish the Automated Aerial Refueling (AAR) task. Previous work toward an AAR solution has involved the use of Differential Global Positioning (DGPS), Light Detection and Ranging (LiDAR), and monocular vision. This research aims to leverage organic systems in future aircraft to compliment these solutions. The algorithm presented here generates a point cloud from the disparity between stereo camera images. The algorithm then ts the point cloud to a digital model using a variant of iterative closest points (ICP). The algorithm was tested using simulated imagery of an F-15E rendered in a 3D modeling environment. Experimental results showed a significant increase in accuracy as the receiver aircraft approached the tanker aircraft, reporting accuracies within +/-10cm at distances less than 17m. The algorithm's ability to transition to the real world was validated qualitatively using a 1:7 camera and model setup.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号