首页> 美国政府科技报告 >Design and Hardware-in-the-Loop Implementation of Optimal Canonical Maneuvers for an Autonomous Planetary Aerial Vehicle.
【24h】

Design and Hardware-in-the-Loop Implementation of Optimal Canonical Maneuvers for an Autonomous Planetary Aerial Vehicle.

机译:自主行星飞行器最优典型机动的设计与硬件在环实现。

获取原文

摘要

A truly autonomous aerial vehicle is required for conducting aerial missions at distances great enough to cause time lag in communications, such as on other planets. This level of autonomy also reduces the requirement for trained UAV pilots to fly round-the-clock missions. Development of optimal canonical maneuvers is a step towards achieving real-time optimal trajectory generation and more fully autonomous aircraft capable of independent and efficient flight maneuvering. This thesis develops a model of the MONARC aerial vehicle and sets up the optimal control problem for generating canonical maneuver profiles. The DIDO optimal control software is used in order to generate time-optimal trajectories for flight implementation on the MONARC test bed. The ability of the MONARC to fly the optimal trajectories is verified using a 6DOF SIMULINK model. Several canonical maneuvers were developed and optimized to generate trajectories for multiple flight scenarios. One of these cases is analyzed for implementation as part of a Hardware-in-the-Loop (HIL) simulation. This HIL test will verify that the optimization model has sufficient fidelity to be used to generate optimal trajectories that can be physically flown by the MONARC.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号