首页> 外文期刊>Nature Machine Intelligence >Augmenting large language models with chemistry tools
【24h】

Augmenting large language models with chemistry tools

机译:使用化学工具增强大型语言模型

获取原文
获取原文并翻译 | 示例

摘要

Large language models (LLMs) have shown strong performance in tasks across domains but struggle with chemistry-related problems. These models also lack access to external knowledge sources, limiting their usefulness in scientific applications. We introduce ChemCrow, an LLM chemistry agent designed to accomplish tasks across organic synthesis, drug discovery and materials design. By integrating 18 expert-designed tools and using GPT-4 as the LLM, ChemCrow augments the LLM performance in chemistry, and new capabilities emerge. Our agent autonomously planned and executed the syntheses of an insect repellent and three organocatalysts and guided the discovery of a novel chromophore. Our evaluation, including both LLM and expert assessments, demonstrates ChemCrow's effectiveness in automating a diverse set of chemical tasks. Our work not only aids expert chemists and lowers barriers for non-experts but also fosters scientific advancement by bridging the gap between experimental and computational chemistry.
机译:大型语言模型 (LLM) 在跨领域的任务中表现出出色的性能,但在与化学相关的问题上却难以解决。这些模型还缺乏对外部知识来源的访问,限制了它们在科学应用中的有用性。我们介绍了 ChemCrow,这是一种 LLM 化学试剂,旨在完成有机合成、药物发现和材料设计等任务。通过集成 18 个专家设计的工具并使用 GPT-4 作为 LLM,ChemCrow 增强了 LLM 在化学方面的性能,并出现了新功能。我们的代理人自主计划和执行一种驱虫剂和三种有机催化剂的合成,并指导发现一种新的发色团。我们的评估,包括 LLM 和专家评估,证明了 ChemCrow 在自动化各种化学任务方面的有效性。我们的工作不仅帮助专业化学家,降低非专家的门槛,还通过弥合实验化学和计算化学之间的差距来促进科学进步。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号