...
首页> 外文期刊>Neuromuscular disorders: NMD >Screening for antisense modulation of dystrophin pre-mRNA splicing.
【24h】

Screening for antisense modulation of dystrophin pre-mRNA splicing.

机译:肌营养不良蛋白前mRNA拼接反义调节的筛选。

获取原文
获取原文并翻译 | 示例
           

摘要

Most gene therapy approaches to genetic disorders aim to compensate loss-of-function by introducing recombinant cDNA-based minigenes into diseased tissues. The current report represents an ongoing series of studies designed to correct genetic mutations at the post-transcriptional level. This strategy modifies the binding of components of the spliceosome by high affinity hybridisation of small complementary (antisense) RNA oligonucleotides to specific pre-mRNA sequences. These, so-called 'splicomer' reagents are chemically modified to impart bio-stability, and are designed to cause skipping of mutant frame-shifting exon sequences leading to restoration of the reading frame and an internally deleted but partially functional gene product. For instance, Duchenne muscular dystrophy is generally caused by frame-shift mutations in the dystrophin gene, whereas in-frame deletions of up to 50% of the central portion of the gene cause Becker muscular dystrophy, a much milder myopathy, which in some cases can remain asymptomatic to old age. In the mdx mouse model of Duchenne muscular dystrophy, a mutation in exon 23 of the dystrophin gene creates a stop codon and leads to a dystrophin-deficient myopathy in striated muscle. In previous studies, we have demonstrated that forced skipping of this mutant exon by treatment of mdx muscle cells with splicomer oligonucleotides can generate in-frame dystrophin transcripts and restore dystrophin expression. Here, we report the results of an optimisation of splicomer sequence design by the use of both high-throughput arrays and biological screens. This has resulted in specific and, importantly, exclusive skipping of the targeted exon in greater than 60% of dystrophin mRNA, leading to the de novo synthesis and localisation of dystrophin protein in cultured mdx muscle cells.
机译:大多数针对遗传疾病的基因治疗方法旨在通过将基于cDNA的重组小基因引入患病组织来补偿功能丧失。本报告代表了正在进行的一系列研究,旨在纠正转录后水平的基因突变。该策略通过将小的互补(反义)RNA寡核苷酸与特定的pre-mRNA序列进行高亲和力杂交来修饰剪接体成分的结合。这些所谓的“ splicomer”试剂经过化学修饰以赋予生物稳定性,并被设计为引起突变的移码外显子序列的跳跃,从而导致阅读框和内部缺失但部分功能的基因产物的恢复。例如,Duchenne肌营养不良症通常是由肌营养不良蛋白基因的移码突变引起的,而基因中心部分的多达50%的读框内缺失则导致Becker肌营养不良症,这是一种轻度的肌病,在某些情况下,可以保持无症状到老年。在Duchenne肌营养不良症的mdx小鼠模型中,肌营养不良蛋白基因外显子23的突变产生终止密码子,并导致横纹肌肌营养不良蛋白缺乏性肌病。在以前的研究中,我们已经证明通过用剪接体寡核苷酸处理mdx肌肉细胞来强制跳过该突变外显子可以产生框内肌营养不良蛋白转录物并恢复肌营养不良蛋白的表达。在这里,我们报告通过使用高通量阵列和生物筛选优化剪接体序列设计的结果。这导致特异且重要的是,在超过60%的肌营养不良蛋白mRNA中特异性地跳过了目标外显子,导致肌营养不良蛋白在培养的mdx肌肉细胞中从头合成和定位。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号