首页> 外文期刊>Medical Physics >Radioimmunotherapy with radioactive nanoparticles: biological doses and treatment efficiency for vascularized tumors with or without a central hypoxic area.
【24h】

Radioimmunotherapy with radioactive nanoparticles: biological doses and treatment efficiency for vascularized tumors with or without a central hypoxic area.

机译:放射性纳米粒子的放射免疫疗法:具有或没有中央缺氧区域的血管化肿瘤的生物剂量和治疗效率。

获取原文
获取原文并翻译 | 示例
           

摘要

PURPOSE: Radioactive atoms attached to monoclonal antibodies are used in radioimmunotherapy to treat cancer while limiting radiation to healthy tissues. One limitation of this method is that only one radioactive atom is linked to each antibody and the deposited dose is often insufficient to eradicate solid and radioresistant tumors. In a previous study, simulations with the Monte Carlo N-Particle eXtended code showed that physical doses up to 50 Gy can be delivered inside tumors by replacing the single radionuclide by a radioactive nanoparticle of 5 nm diameter containing hundreds of radioactive atoms. However, tumoral and normal tissues are not equally sensitive to radiation, and previous works did not take account the biological effects such as cellular repair processes or the presence of less radiosensitive cells such as hypoxic cells. METHODS: The idea is to adapt the linear-quadratic expression to the tumor model and to determine biological effective doses (BEDs) delivered through and around a tumor. This BED is then incorporated into a Poisson formula to determine the shell control probability (SCP) which predicts the cell cluster-killing efficiency at different distances "r" from the center of the tumor. BED and SCP models are used to analyze the advantages of injecting radioactive nanoparticles instead of a single radionuclide per vector in radioimmunotherapy. RESULTS: Calculations of BED and SCP for different distances r from the center of a solid tumor, using the non-small-cell lung cancer as an example, were investigated for 90Y2O3 nanoparticles. With a total activity of about 3.5 and 20 MBq for tumor radii of 0.5 and 1.0 cm, respectively, results show that a very high BED is deposited in the well oxygenated part of the spherical carcinoma. CONCLUSIONS: For either small or large solid tumors, BED and SCP calculations highlight the important benefit in replacing the single beta-emitter 90Y attached to each antibody by a 90Y2O3 nanoparticle.
机译:目的:与单克隆抗体连接的放射性原子用于放射免疫疗法中,以治疗癌症,同时限制向健康组织的放射。该方法的局限性在于,每个抗体仅连接一个放射性原子,并且沉积的剂量通常不足以根除实体瘤和放射性瘤。在先前的研究中,使用Monte Carlo N-Particle扩展代码进行的模拟显示,通过用直径为5 nm的放射性纳米粒子(包含数百个放射性原子)代替单个放射性核素,可以在肿瘤内部递送高达50 Gy的物理剂量。但是,肿瘤组织和正常组织对放射线的敏感性不同,以前的工作没有考虑生物学效应,例如细胞修复过程或放射敏感性较低的细胞(例如低氧细胞)的存在。方法:该想法是使线性二次表达适应肿瘤模型,并确定通过肿瘤及其周围传递的生物有效剂量(BED)。然后将该BED纳入Poisson公式中,确定壳控制概率(SCP),该概率预测距肿瘤中心不同距离“ r”的细胞杀灭簇的效率。 BED和SCP模型用于分析在放射免疫疗法中每个载体注射放射性纳米颗粒而不是单个放射性核素的优势。结果:以非小细胞肺癌为例,对90Y2O3纳米粒子研究了距实体瘤中心不同距离r的BED和SCP。结果表明,对于半径分别为0.5和1.0 cm的肿瘤半径,总活性分别约为3.5和20 MBq,结果表明,非常高的BED沉积在球形癌的氧合良好的部分。结论:对于小型或大型实体瘤,BED和SCP的计算都突出显示了用90Y2O3纳米颗粒代替与每个抗体相连的单个β-发射体90Y的重要好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号