首页> 外文期刊>Calculus of variations and partial differential equations >Existence of the generalized Fu?ík spectrum for nonhomogeneous elliptic operators
【24h】

Existence of the generalized Fu?ík spectrum for nonhomogeneous elliptic operators

机译:非齐次椭圆算子的广义Fu?ík谱的存在性

获取原文
获取原文并翻译 | 示例

摘要

By variational methods and Morse theory, we prove the existence of uncountably many (α, β) ∈ R~2 for which the equation ?div A(x,?u) = αu_+~(p?1) ?βu_-~(p?1) in ?, has a sign changing solution under the Neumann boundary condition, where a map A from ?×R~N to R~N satisfying certain regularity conditions. As a special case, the above equation contains the p-Laplace equation. However, the operator A is not supposed to be (p ? 1)-homogeneous in the second variable. In particular, it is shown that generally the Fu?ík spectrum of the operator ?div A(x,?u) on W~(1,p)(?) contains some open unbounded subset of R~2.
机译:通过变分方法和莫尔斯理论,我们证明了存在无数个(α,β)∈R〜2,其等式?div A(x,?u)=αu_+〜(p?1)?βu_-〜( ?中的p?1)在诺伊曼边界条件下具有符号改变解,其中从?×R〜N到R〜N的映射A满足某些规则性条件。作为特殊情况,上面的方程式包含p-Laplace方程式。但是,在第二变量中,算子A不应该是(p≥1)同质的。特别是,它表明,通常在W〜(1,p)(?)上的算符?div A(x,?u)的Fu?ík谱包含R〜2的一些开放的无界子集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号