首页> 外文期刊>IEEE/ASME transactions on mechatronics: A joint publication of the IEEE Industrial Electronics Society and the ASME Dynamic Systems and Control Division >An Offline-Merge-Online Robot Teaching Method Based on Natural Human-Robot Interaction and Visual-Aid Algorithm
【24h】

An Offline-Merge-Online Robot Teaching Method Based on Natural Human-Robot Interaction and Visual-Aid Algorithm

机译:一种基于自然人机交互和视觉辅助算法的线下-合并-线上机器人教学方法

获取原文
获取原文并翻译 | 示例

摘要

This article proposes an offline-merge-online robot teaching method (OMORTM). Specifically, a virtual-real fusion interactive interface (VRFII) is first developed by projecting a virtual robot into the real scene with an augmented-reality (AR) device, aiming to implement offline teaching. Second, a visual-aid algorithm (VAA) is proposed to improve offline teaching accuracy. Third, a gesture and speech teaching fusion algorithm (GSTA) with the fingertip tactile force feedback is developed to obtain the natural teaching pattern and improve the interactive accuracy of teaching the real or virtual robot. More specifically, through the VRFII, the operator can use the GSTA and the VAA to teach the virtual robot naturally and safely, and then the real robot reproduces the motion of the virtual robot. Therefore, OMORTM enables the teaching results to be quickly verified while ensuring the operator's safety and avoiding damage to the robot or workpiece. A series of experiments were conducted to validate the practicality and effectiveness of OMORTM. The results show that by effectively combining the offline and online, OMORTMprovides accurate robotic teaching processes, suitable for nonprofessionals.
机译:本文提出了一种离线-合并-在线机器人教学方法(OMORTM)。具体而言,首先通过增强现实(AR)设备将虚拟机器人投射到真实场景中,开发虚拟-现实融合交互界面(VRFII),旨在实现线下教学。其次,提出一种视觉辅助算法(VAA)来提高线下教学的准确性。第三,开发了一种具有指尖触觉力反馈的手势和语音教学融合算法(GSTA),以获得自然的教学模式,提高真人或虚拟机器人教学的交互准确性。更具体地说,通过VRFII,操作者可以使用GSTA和VAA自然安全地对虚拟机器人进行示教,然后真实机器人再现虚拟机器人的运动。因此,OMORTM能够快速验证示教结果,同时确保操作人员的安全并避免对机器人或工件造成损坏。通过一系列实验验证了OMORTM的实用性和有效性。结果表明,通过线下和线上的有效结合,OMORTM提供了精准的机器人教学流程,适合非专业人士。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号