首页> 外文期刊>Industrial Robot >Smooth and near time-optimal trajectory planning of industrial robots for online applications
【24h】

Smooth and near time-optimal trajectory planning of industrial robots for online applications

机译:在线应用的工业机器人的平滑且接近时间的最优轨迹规划

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose - The purpose of this paper is to propose a new smooth online near time-optimal trajectory planning approach to reduce the consuming time compared to the conventional dynamics trajectory planning methods. Design/methodology/approach - In the proposed method, the robot path is expressed by a scalar path coordinate. The joints torque boundary and speed boundary are transformed into the plane, which can generate the limitation curves of pseudo-velocity. The maximum pseudo-velocity curve that meets the limits of torque and speed is built up through the feature points and control points in the plane by using cubic polynomial fitting method. Control points used for cubic polynomial construction are optimized by the Golden-Section method. Findings - The proposed method can avoid Range's phenomenon and also guarantee the continuity of torque. Practical implications - The algorithm designed in this paper is used for the controller of a new industrial robot which will be equipped for the welding automatic lines of Chery Automobile Co. Ltd. Originality/value - Compared to the five-order polynomial trajectory optimization method proposed by Macfarlane and Croft, the approach described in this paper can effectively take advantage of joints maximum speed, and the calculation time of this method is shorter than conventional dynamics methods.
机译:目的-本文的目的是提出一种新的平滑的在线近时间最优轨迹规划方法,与传统的动力学轨迹规划方法相比,可以减少消耗时间。设计/方法/方法-在提出的方法中,机器人路径由标量路径坐标表示。将关节​​的转矩边界和速度边界转换为平面,可以生成伪速度的极限曲线。利用三次多项式拟合法,通过平面上的特征点和控制点,建立了满足转矩和速度极限的最大伪速度曲线。用于三次多项式构造的控制点通过黄金分割法进行了优化。发现-所提出的方法可以避免Range现象,并且还可以保证扭矩的连续性。实际意义-本文设计的算法用于新型工业机器人的控制器,该机器人将用于奇瑞汽车有限公司的焊接自动生产线。原创性/价值-与提出的五阶多项式轨迹优化方法相比由Macfarlane和Croft提出,该方法可以有效利用关节的最大速度,并且该方法的计算时间比常规动力学方法要短。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号