首页> 外文期刊>Artificial Intelligence Research >Adaptive control for uncertain discrete-time systems with unknown disturbance based on RNN
【24h】

Adaptive control for uncertain discrete-time systems with unknown disturbance based on RNN

机译:基于RNN的不确定离散不确定时滞系统的自适应控制。

获取原文
获取原文并翻译 | 示例

摘要

A new robust adaptive control algorithm is developed for a class of uncertain discrete-time SISO systems. Different from the existing investigated systems, the concerned discrete system here is with both uncertain smooth nonlinear functions and unknown disturbance. On the basis of the idea of neural network (NN) approximation, a novel recurrent neural network (RNN) is first proposed and used to approximate a backstepping control law following the transformation of the original system into a predictor form. According to Lyapunov stability theorem, a new on-line tuning law for parameters of RNN is obtained. Meanwhile, in order to achieve satisfying robust tracking performance, a novel controller is constructed by virtue of the approximation error of RNN. It has been proved that all the concerned signals are uniformly ultimately bounded. In addition, a very small tracking error can be obtained through appropriate selection of control parameters. Finally, we give a simulation example to demonstrate the validness of the newly proposed control algorithm for the investigated systems.
机译:针对一类不确定的离散时间SISO系统,开发了一种新的鲁棒自适应控制算法。与现有的研究系统不同,这里涉及的离散系统具有不确定的平滑非线性函数和未知的扰动。基于神经网络(NN)近似的思想,首先提出了一种新颖的递归神经网络(RNN),并将其用于将原始系统转换为预测器形式后的反推控制律。根据李雅普诺夫稳定性定理,获得了一种新的RNN参数在线调节定律。同时,为了实现令人满意的鲁棒跟踪性能,利用RNN的逼近误差构造了一种新颖的控制器。事实证明,所有有关信号均最终受到统一限制。另外,通过适当选择控制参数可以获得非常小的跟踪误差。最后,我们给出一个仿真例子,以证明新提出的控制算法对所研究系统的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号