首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Experimental demonstration of heat loss and turn-down ratio for a multi-panel, actively deployed radiator
【24h】

Experimental demonstration of heat loss and turn-down ratio for a multi-panel, actively deployed radiator

机译:多面板的热损耗和匝数比的实验演示,积极展开散热器

获取原文
获取原文并翻译 | 示例
           

摘要

Origami-inspired, dynamic spacecraft radiators have been proposed which utilize an expandable/collapsible surface capable of large variations in emitting surface area. In this work, an experimental prototype of this concept is realized and its performance is analyzed. In particular, we demonstrate the capability of maintaining a spacecraft component at a desired operating temperature through the expansion and contraction of a collapsible radiator to control radiative heat loss. Four aluminum panels are connected via a flexible hinge constructed from interwoven copper wires and suspended from an actuating framework. The radiator panels are connected to a heated aluminum block. The radiator is placed in a vacuum environment with cooled surroundings (173 K) and the total radiative cooling power is determined as a function of radiator actuation position for a constant aluminum block temperature. As the radiator actuates from extended to collapsed, the heat transfer decreases and the fin efficiency increases. For a limited actuation range, the four-panel radiator exhibits a turn-down ratio (largest cooling power / smallest cooling power) of 1.31. A numerical model validated in this work predicts a turn-down ratio of 2.27 for actuation over the full range of radiator positions in surroundings at 4 K. Future revisions that exhibit an increase in panel and hinge thermal conductivities and utilizing eight panels would yield a turn-down ratio of 6.01. Assuming infinite thermal conductivity and infinite hinge conductance, the turndown ratios for two, four and eight panel radiators, respectively, are 2.00, 3.98, and 7.92.
机译:已经提出了折纸,动态空间辐射器利用能够在发射表面积的大变化的可扩展/可折叠表面。在这项工作中,实现了该概念的实验原型,分析了其性能。特别地,我们证明了通过可折叠散热器的膨胀和收缩以控制辐射热损失的膨胀和收缩来展示在所需的工作温度下保持航天器部件的能力。四个铝板通过由交织铜线构造的柔性铰链连接并悬挂在致动框架上。散热器面板连接到加热的铝块。散热器置于具有冷却的周围环境(173k)的真空环境中,并且总辐射冷却功率被确定为恒定铝块温度的散热器致动位置。由于散热器从延伸到倒塌时,传热降低,鳍效率增加。对于有限的致动范围,四面板散热器表现出1.31的旋转比(最大冷却功率/最小冷却功率)。在该工作中验证的数值模型预测了2.27的旋转比率,用于在4 k的周围环境中的全系列散热器位置上致动。未来的修订,表现出面板和铰链热导体的增加,并利用八个面板将产生转弯减率为6.01。假设无限的导热率和无限铰链电导,分别为2.00,3.98和7.92的两个,四个和八个面板辐射器的调节比。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号