...
首页> 外文期刊>Journal of Micromechanics and Microengineering >On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: physical perspectives and theoretical analysis
【24h】

On traveling-wave field-effect flow control for simultaneous induced-charge electroosmotic pumping and mixing in microfluidics: physical perspectives and theoretical analysis

机译:在微流体同时诱导电荷电渗泵浦和混合的行进波场效应流量控制:物理观点与理论分析

获取原文
获取原文并翻译 | 示例
           

摘要

Since its first proposition at the end of the last century (Schasfoort et al 1999 Science 286 942-5), field-effect flow control at micrometer dimensions has attracted tremendous attention from the microfluidic community. Most previous research on this subject has mainly focused on enhancing the electroosmotic pump flow rate by introducing an additional in-phase counterionic charge across the diffusing screening cloud with external gate electrodes of static DC voltages. However, there is a flaw, namely that AC fields, which suppress undesirable electrochemical reactions, result in zero time-averaged flow. Starting from this point, we present herein a brand new approach to traveling-wave field-effect electroosmosis control from a theoretical point of view, in the context of a smart manipulation tool for the stratified liquid content of miniaturization systems. In the configuration of a traveling-wave flow field-effect transistor (TW-FFET), the field-induced out-of-phase Debye screening charge within the thin double layer originates from the forward propagation of a traveling potential wave along a discrete arrangement of external gating electrode arrays, which interacts actively with the horizontal standing-wave electric field imposed across the source-drain terminal. Since the voltage waves and induced free charge are all sinusoidal functions of the observation time, the net ICEO flow component can survive in a broad frequency range. Due to the action of the background AC electric field on the inhomogeneous counterionic charge induced at the solution/sidewall interface, asymmetric ICEO vortex patterns appear above the traveling-wave gate arrays, giving rise to simultaneous induced-charge electroosmotic pumping and mixing of fluidic samples. A mathematical model is then developed to numerically investigate the feasibility of TW-FFETs in electrokinetic microflow manipulation. A prototyping paradigm of fully electrokinetics-driven microfabricated fluidic networks in a cross shape is theoretically erected, with four sets of gating traveling-fields in perpendicular orientations, from which the resulting liquid mixture is obtainable at any one of the three outlet ports. Supported by mathematical analysis, our physical demonstration of the TW-FFET shows it has great potential to advance fully automated electroconvective sample treatment in modern micro total analytical systems.
机译:自上世纪末的第一次命题以来(Schasfoort等1999科学286 942-5),微米尺寸的场效应流量控制引起了微流体群落的巨大关注。以前的最先前对该受试者的研究主要集中于通过在漫射筛分云与静态直流电压的外栅电极上引入额外的相位抗云的额外的相位抗衡电荷来增强电渗泵流量。然而,存在缺陷,即抑制不期望的电化学反应的AC场,导致零时间平均流量。从这一点开始,我们在本文中存在一种全新的旅行波场效应电渗控制方法,从理论的角度来看,在微型化系统的分层液体含量的智能操作工具的背景下。在行驶波流场效应晶体管(TW-FFET)的配置中,薄双层内的场诱导的逐相去脱模筛选电荷始致沿着离散布置的行进电位波的前向传播外部浇注电极阵列,其在源极 - 漏极端子上施加的水平驻波电场主动地相互作用。由于电压波和诱导的自由电荷是观察时间的所有正弦功能,因此净冰流量组件可以在宽频范围内存活。由于在溶液/侧壁接口处引起的非均匀反常见电荷上的背景AC电场的动作,不对称的冰涡流模式出现在行进波门阵列上方,产生同时诱导电荷电渗泵和流体样品的混合。然后开发了一种数学模型以在数值上研究电动微流量操纵中TW-FFET的可行性。理论上竖立了横形状的完全电动性驱动的微型制衡流体网络的原型型范式,垂直取向有四组浇注行进场,从中获得所得液体混合物在三个出口中的任何一个。通过数学分析支持,我们的TW-FFET的物理演示表明,在现代微量分析系统中推进全自动电烤样样品的潜力很大。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号