首页> 外文学位 >Bacterial flows: Mixing and pumping in microfluidic systems using flagellated bacteria.
【24h】

Bacterial flows: Mixing and pumping in microfluidic systems using flagellated bacteria.

机译:细菌流:使用鞭毛细菌在微流系统中混合和泵送。

获取原文
获取原文并翻译 | 示例

摘要

The objective of the proposed thesis is to demonstrate the use of bacteria as controllable elements of a microfluidic network in micro-engineered systems. We utilize flagellated bacteria (Escherichia coli and Serratia marcescens) whose motors are extremely powerful and reasonably well understood. We are strongly against the removal of the motor from the bacterium or the fabrication to mimic the microflagellar system since the full organism is already naturally designed to accomplish many engineering tasks. The core of the proposed study relies on the use of flagellated bacteria to actuate surrounding fluid in a controlled and directed manner. Flagellated bacteria are used both as individual actuators and in arrays (bacterial carpet), where the collective effort of the organisms can be applied to complete microfluidic systems such as a chaotic mixer and a fluidic pump. The effect of bacterial motion on the diffusion of a molecule of high molecular weight is studied by observing the mixing of two streams of fluid in a microfluidic flow cell. The presence of motile E. coli bacteria in one of the streams results in a remarkable increase in the effective diffusion coefficient. If a large number of Serratia marcescens are encouraged to dock to the walls of a microchannel, then a flagellar carpet is created with unique properties. The activity of the bacterial carpet can be used to enhance the mixing between two streams of fluid. Furthermore, we observe that the diffusion process is also shown to undergo a change from standard Fickian diffusion to superdiffusive behavior in both cases. Another exciting property of a bacterial carpet in a microfluidic system is the observation that it can pump fluid autonomously at speeds as high as 25 microns per second. The bacteria draw their propulsion energy from the nutrients in the motile buffer and hence the system is a self-contained microfluidic component. Factors governing the behavior of the bacteria-powered pump are tested to determine pumping characteristics as well as the durability of the bacterial motor array under a wide variety of external stimuli (food, temperature, geometry). Lastly, we investigate the mechanisms that lead to the onset and decay of self-organization and coordination of the flagella over length scales hundreds of times larger than the size of the individual cells.
机译:提出的论文的目的是证明在微工程系统中细菌作为微流体网络可控元件的用途。我们利用鞭毛细菌(大肠埃希氏菌和粘质沙雷氏菌),它们的马达非常强大,并且被很好地理解。我们坚决反对从细菌中去除马达或模仿微鞭毛系统的制造,因为完整的生物体已经自然地设计成可以完成许多工程任务。拟议研究的核心依靠使用鞭毛细菌以受控和定向的方式来致动周围的液体。鞭毛细菌既可以用作单独的致动器,也可以用作阵列(细菌地毯),在这种阵列中,生物的共同努力可以应用于完整的微流体系统,例如混沌混合器和流体泵。通过观察微流体流通池中两股流体的混合,研究了细菌运动对高分子量分子扩散的影响。在其中一种流中存在活动性大肠杆菌细菌会导致有效扩散系数显着增加。如果鼓励大量粘质沙雷氏菌(Serratia marcescens)停靠在微通道壁上,则将产生具有独特性质的鞭毛地毯。细菌地毯的活性可用于增强两个流体流之间的混合。此外,我们观察到,在两种情况下,扩散过程也都经历了从标准Fickian扩散到超扩散行为的变化。微流控系统中细菌地毯的另一个令人兴奋的特性是观察到它可以以每秒25微米的速度自动泵送流体。细菌从运动缓冲液中的营养中汲取推进力,因此该系统是一个自包含的微流体组件。测试了控制细菌泵的行为的因素,以确定在各种外部刺激(食物,温度,几何形状)下的泵送特性以及细菌马达阵列的耐用性。最后,我们研究了导致鞭毛自组织和协调的开始和衰变的机制,这些鞭毛的长度比单个细胞的大小大数百倍。

著录项

  • 作者

    Kim, Min Jun.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Biology Microbiology.; Engineering Biomedical.; Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2005
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微生物学;生物医学工程;机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号