首页> 外文期刊>Journal of Computational Physics >A plasma-vacuum interface tracking algorithm for magnetohydrodynamic simulations of coaxial plasma accelerators
【24h】

A plasma-vacuum interface tracking algorithm for magnetohydrodynamic simulations of coaxial plasma accelerators

机译:同轴等离子体加速器磁流体型模拟等离子体真空接口跟踪算法

获取原文
获取原文并翻译 | 示例
       

摘要

The resistive Magneto-hydrodynamic (MHD) model describes the behavior of a strongly ionized plasma in the presence of external electric and magnetic fields. For problems involving the plasma with an open boundary to very low pressure/vacuum regions, the continuum assumption is no longer valid in the entire domain of interest. For example, this is seen in a plasma accelerator where a dense plasma expands into a vacuum background. A common practice to deal with this issue is to assign small values of density and pressure to the vacuum regions and proceed to solve the continuum based MHD equations throughout the domain. We show that this approach fails to produce solutions consistent with the physics of the problem and can give rise to unacceptable artifacts such as spurious shocks. We develop a plasma-vacuum interface tracking approach to mitigate this problem. The plasma-vacuum interface is tracked in a physically consistent manner and the MHD equations are solved only in the regions that contain the plasma. The interface tracking is achieved using a face-flux formulation derived from the theoretical solution to a 1D free expansion problem. Coupled with a threshold based approach, the interface tracking is implemented for both explicit and implicit time stepping frameworks on generalized unstructured grids. Simulations of magnetized thermal plasma jets expanding into a vacuum background indicate plume profiles devoid of the unphysical shock obtained using the small background density approach. In the context of resistive MHD simulations, the interface tracking approach overcomes the numerical stiffness induced by specifying a large background resistivity in the vacuum regions, resulting in significant wall-clock time gains. (C) 2018 Elsevier Inc. All rights reserved.
机译:电阻磁动力学(MHD)模型描述了在存在外部电场和磁场存在下强电离等离子体的行为。对于涉及具有开放边界的等离子体对非常低压/真空区域的等离子体的问题,连续的假设在整个感兴趣的领域中不再有效。例如,这在等离子体加速器中可以看到,其中致密的等离子体膨胀到真空背景中。处理此问题的常见做法是为真空区域分配小值和压力,并继续解决整个域中的基于连续的MHD方程。我们表明,这种方法未能产生与问题的物理学一致的解决方案,并且可以产生不可接受的伪像,例如杂散冲击。我们开发了一种等离子体真空接口跟踪方法来缓解此问题。等离子体真空界面以物理上一致的方式跟踪,并且仅在包含等离子体的区域中求解MHD方程。使用从理论解决方案的面部通量配方实现界面跟踪到1D自由膨胀问题。耦合与基于阈值的方法,对广义非结构化网格上的显式和隐式时间踩踏框架实现了接口跟踪。磁化热等离子体喷射到真空背景中的仿真表明使用小背景密度方法获得的不良震动的羽流曲线。在电阻MHD仿真的背景下,界面跟踪方法克服了通过在真空区域中指定大的背景电阻率来克服的数值刚度,从而产生显着的壁钟时间。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号