...
首页> 外文期刊>Journal of Computational Physics >Iterated pressure-correction projection methods for the unsteady incompressible Navier-Stokes equations
【24h】

Iterated pressure-correction projection methods for the unsteady incompressible Navier-Stokes equations

机译:迭代压力校正投影方法为不稳定的不可压缩Navier-Stokes方程

获取原文
获取原文并翻译 | 示例

摘要

Iterated pressure-correction projection schemes for the unsteady incompressible Navier-Stokes equations are developed, analyzed and exemplified, in relation to preconditioned iterative methods and the pressure-Schur complement equation. Typical pressure-correction schemes perform only one iteration per stage or time step, and suffer from splitting errors that result in spurious numerical boundary layers and a limited order of convergence in time. We show that performing iterations not only reduces the effects of the splitting errors, but can also be more efficient computationally than merely reducing the time step. We devise stopping criteria to recover the desired order of temporal convergence, and to drive the splitting error below the time-integration error. We also develop and implement the iterated pressure corrections with both multi-step and multi-stage time integration schemes. Finally, to reduce further the computational cost of the iterated approach, we combine it with an Aitken acceleration scheme. Our theoretical results are validated and illustrated by numerical test cases for the Stokes and Navier-Stokes equations, using implicit-explicit (IMEX) backwards differences and Runge-Kutta time-integration solvers. The test cases comprise a now classical manufactured solution in the projection method community and a modified version of a more recently proposed manufactured solution. The different error types, stopping criterion, recovered orders of convergence, and acceleration rates are illustrated, as well as the effects of the rotational corrections and time-integration schemes. It is found that iterated pressure-correction schemes can retrieve the accuracy and temporal convergence order of fully-coupled schemes and are computationally more efficient than classic pressure-correction schemes. (C) 2018 Elsevier Inc. All rights reserved.
机译:与预先说明的迭代方法和压力 - 舒尔补码方程相关,分析和举例说明了不稳定的不可压缩Navier-Stokes方程的迭代压力校正投影方案。典型的压力校正方案仅在每个阶段或时间步骤执行一次迭代,并且遭受将导致虚假数值边界层的分裂误差和有限的收敛顺序。我们表明,执行迭代不仅可以减少分割错误的影响,而且还可以在计算上更有效地减少时间步长。我们设计停止标准以恢复期望的时间趋同顺序,并驱动时间集成误差以下的分割误差。我们还通过多步和多级时间集成方案开发和实现迭代压力校正。最后,为了进一步降低迭代方法的计算成本,我们将其与Aitken加速度方案相结合。我们的理论结果是通过斯托克斯和Navier-Stokes方程式的数值测试用例进行验证和说明,使用隐式显式(IMEX)向后差异和Runge-Kutta时间集成求解器。测试用例包括现在在投影方法群落中的经典制造解决方案和最近提出的制造解决方案的改进版本。示出了不同的误差类型,停止标准,恢复的收敛性和加速率,以及旋转校正和时间集成方案的影响。发现迭代的压力校正方案可以检索完全耦合方案的精度和时间收敛顺序,并且比经典的压力校正方案计算更有效。 (c)2018年Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号