首页> 外文期刊>Diamond and Related Materials >Influence of boron doping level on the basic mechanical properties and erosion behavior of boron-doped micro-crystalline diamond (BDMCD) film
【24h】

Influence of boron doping level on the basic mechanical properties and erosion behavior of boron-doped micro-crystalline diamond (BDMCD) film

机译:硼掺杂水平对硼掺杂微晶金刚石(BDMCD)膜的基本力学性能和腐蚀行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

For the chemical vapor deposition (CVD) of diamond films, boron doping with appropriate boron doping levels can enhance the basic mechanical properties of the as-deposited films, especially the film -substrate adhesive strength. However, the boron doping level, which is thought to play a critical role in modifying the properties of the boron-doped diamond (BDD) film, must be further investigated. In the present investigation, the commonly used reaction-bonded silicon carbide (RB-SiC) material is selected as the substrate upon which boron-doped micro-crystalline (BDMCD) films with similar film thickness (24.8-26.3 pin) are synthesized using mixed reactant gas with different B/C atomic ratios, i.e., different boron doping levels. Systematic characterization and solid particle erosion tests are conducted on all specimens to elucidate the influence of the boron doping level on the diamond films' basic mechanical properties and erosion behavior and to elaborate the impact velocity and impact angle dependence of the erosion behavior. The results demonstrate that moderate boron doping levels (5000 and 8000 ppm) are able to maximize the growth rate, reduce the surface roughness, guarantee diamond quality and hardness, minimize the residual stress, and significantly enhance the film -substrate adhesive strength, thereby providing favorable erosion behavior. By contrast, very high boron doping levels (12,000 and 16,000 ppm) deteriorate the erosion behavior of as-deposited BDMCD films, mainly because of the excessive reduction of the film quality and hardness, together with the deterioration of the film -substrate adhesive strength caused by the transformation of the residual stress from compressive to tensile. With increasing either impact velocity or impact angle, the stable erosion rates of all specimens increase, and the film lifetime of the coated specimens become shorter. Moreover, the impact velocity dependence of stable erosion rates for diamond-coated specimens is considerably stronger than that for the uncoated RB-SiC specimen, as indicated by a much higher velocity exponent. (C) 2016 Elsevier B.V. All rights reserved.
机译:对于金刚石薄膜的化学气相沉积(CVD),具有适当的硼掺杂水平的硼掺杂可以增强沉积薄膜的基本力学性能,尤其是薄膜 - 粘合强度。然而,必须进一步研究在改变硼掺杂的金刚石(BDD)膜的性质时发挥关键作用的硼掺杂水平。在本研究中,选择常用的反应键合的碳化硅(RB-SiC)材料作为基板,在其中使用混合合成具有类似膜厚度(24.8-26.3销)的硼掺杂的微晶(BDMCD)薄膜的基材具有不同B / C原子比的反应气体,即不同的硼掺杂水平。在所有标本上进行系统表征和固体颗粒腐蚀试验,以阐明硼掺杂水平对金刚石膜的基本机械性能和侵蚀行为的影响,并详细阐述侵蚀行为的冲击速度和冲击角度依赖性。结果表明,中等硼掺杂水平(5000和8000ppm)能够最大限度地提高生长速率,降低表面粗糙度,保证金刚石质量和硬度,最大限度地减少剩余应力,并显着提高薄膜 - 膜粘合强度,从而提供有利的侵蚀行为。相比之下,非常高的硼掺杂水平(12,000和16,000 ppm)劣化了沉积的BDMCD薄膜的侵蚀行为,主要是由于薄膜质量和硬度的过度降低,以及薄膜的劣化引起的薄膜通过从压缩到拉伸的残余应力的转化。随着撞击速度或冲击角度的增加,所有样品的稳定侵蚀率增加,涂层标本的薄膜寿命变短。此外,金刚石标本稳定侵蚀速率的冲击速度依赖性比未涂覆的RB-SIC样本的稳定速率相当强,如速度更高的速度指数所示。 (c)2016年Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号