首页> 外文期刊>Progress in Artificial Intelligence >Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs
【24h】

Smooth 3D Path Planning by Means of Multiobjective Optimization for Fixed-Wing UAVs

机译:通过针对固定翼UAV的多目标优化平滑3D路径规划

获取原文
获取原文并翻译 | 示例
           

摘要

Demand for 3D planning and guidance algorithms is increasing due, in part, to the increase in unmanned vehicle-based applications. Traditionally, two-dimensional (2D) trajectory planning algorithms address the problem by using the approach of maintaining a constant altitude. Addressing the problem of path planning in a three-dimensional (3D) space implies more complex scenarios where maintaining altitude is not a valid approach. The work presented here implements an architecture for the generation of 3D flight paths for fixed-wing unmanned aerial vehicles (UAVs). The aim is to determine the feasible flight path by minimizing the turning effort, starting from a set of control points in 3D space, including the initial and final point. The trajectory generated takes into account the rotation and elevation constraints of the UAV. From the defined control points and the movement constraints of the UAV, a path is generated that combines the union of the control points by means of a set of rectilinear segments and spherical curves. However, this design methodology means that the problem does not have a single solution; in other words, there are infinite solutions for the generation of the final path. For this reason, a multiobjective optimization problem (MOP) is proposed with the aim of independently maximizing each of the turning radii of the path. Finally, to produce a complete results visualization of the MOP and the final 3D trajectory, the architecture was implemented in a simulation with Matlab/Simulink/flightGear.
机译:3D规划和指导算法的需求部分是由于无人驾驶车辆的应用程序增加。传统上,二维(2D)轨迹规划算法通过使用维持恒定高度的方法来解决问题。解决三维(3D)空间中路径规划问题意味着更复杂的场景,维护高度不是有效的方法。呈现的工作实现了用于固定翼无人驾驶飞行器(无人机)的3D飞行路径的架构。目的是通过从3D空间的一组控制点开始,从而最大限度地确定可行的飞行路径,包括初始和最终点。生成的轨迹考虑了UAV的旋转和高程约束。从限定的控制点和UAV的运动约束,产生一组直线段和球面曲线将控制点的联合组合的路径。但是,这种设计方法意味着问题没有单一解决方案;换句话说,为最终路径产生无限解决方案。因此,提出了一种多目标优化问题(MOP),其目的是独立地最大化路径的每个转弯半径。最后,为了生成拖把的完整结果可视化和最终的3D轨迹,该架构是在Matlab / Simulink / Flighgear的模拟中实现的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号