...
首页> 外文期刊>Advanced Robotics: The International Journal of the Robotics Society of Japan >Bio-harmonized control experiments of a carangiform robotic fish underwater vehicle
【24h】

Bio-harmonized control experiments of a carangiform robotic fish underwater vehicle

机译:Carangiform机器人鱼水下航行器的生物协调控制实验

获取原文
获取原文并翻译 | 示例

摘要

This paper presents experimental implementation and comparison of three different control schemes of a bio-inspired robotic fish underwater vehicle. The dynamics model is obtained by unifying conventional rigid body dynamics and bio-fluid dynamics of a carangiform fish swimming given by Lighthill's(LH) slender body theory. It proposes an inclusive mathematical design for better control and energy efficient path travel for the robotic fish. The system is modeled as an two-link robot manipulator (caudal tail) with a mobile base (head). This forward thrust drives the robotic fish head represented by a combined non-linear equation of motion in earth fixed frame. We develop and compare the dynamic motion closed loop control strategy of the bio-harmonized robotic fish based on three different non-linear control schemes using CTM (Computed Torque Method), FF (Feed-Forward) controllers both with dynamic PD compensation and finally a proposed combination of CTM with FF. An inverse dynamic control method based on non-linear state function model including hydrodynamics is proposed to improve tracking performance. CTM control generates a feedback loop for linearization and decoupling robot dynamic model with a shorter response time, while a dynamic PD compensation in the FF path is employed by FF scheme through the desired trajectories. FF model-based strategy results in an improved tracking and shorter route to travel between two points. Overall results indicate that performances of the proposed control schemes based on the inverse dynamic model are comparable and useful for robotic fish motion tracking in fluid environment.
机译:本文介绍了一种生物启发式鱼机器人水下航行器的三种不同控制方案的实验实现和比较。动力学模型是通过将Lighthill(LH)细长体理论给出的香兰鱼游动的常规刚体动力学和生物流体动力学统一起来而获得的。它提出了一种全面的数学设计,可以更好地控制机器鱼,并提高其能源效率。该系统建模为带有可移动基座(头部)的双链接机器人操纵器(尾巴尾部)。该向前的推力驱动机器人鱼头,该机器人鱼头由固定在地面上的组合非线性运动方程表示。我们开发和比较了基于三种不同的非线性控制方案的生物协调机器人鱼的动态运动闭环控制策略,这些策略使用了带有动态PD补偿的CTM(计算转矩法)和FF(前馈)控制器,最后实现了建议将CTM与FF结合使用。为了提高跟踪性能,提出了一种基于非线性状态函数模型的动态动力学控制方法。 CTM控制生成一个反馈回路,用于以较短的响应时间线性化和解耦机器人动态模型,而FF方案通过所需轨迹在FF路径中使用动态PD补偿。基于FF模型的策略可改善跟踪效果,并缩短两点之间的行驶路线。总体结果表明,基于逆动力学模型的拟议控制方案的性能具有可比性,可用于流体环境中机器人鱼运动的跟踪。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号