首页> 外文期刊>International Journal of Advanced Robotic Systems >Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle:
【24h】

Brain-Map Based Carangiform Swimming Behaviour Modeling and Control in a Robotic Fish Underwater Vehicle:

机译:鱼脑水下航行器中基于脑图的Carangiform游泳行为建模和控制:

获取原文
           

摘要

Fish swimming demonstrates impressive speeds and exceptional characteristics in the fluid environment. The objective of this paper is to mimic undulatory swimming behaviour and its control of a body caudal fin (BCF) carangiform fish in a robotic counterpart. Based on fish biology kinematics study, a 2-level behavior based distributed control scheme is proposed. The high-level control is modeled by robotic fish swimming behavior. It uses a Lighthill (LH) body wave to generate desired joint trajectory patterns. Generated LH body wave is influenced by intrinsic kinematic parameters Tail-beat frequency (TBF) and Caudal amplitude (CA) which can be modulated to change the trajectory pattern. Parameter information is retrieved from a fish memory (cerebellum) inspired brain map. This map stores operating region information on TBF and CA parameters obtained from yellow fin tuna kinematics study. Based on an environment based error feedback signal, robotic fish map selects the right parameters value showing adaptive behaviour. A finite state machine methodology has been used to model this brain-kinematic-map control. The low-level control is implemented using inverse dynamics based computed torque method (CTM) with dynamic PD compensation. It tracks high-level generated and encoded patterns (trajectory) for fish-tail undulation. Three types of parameter adaptation for the two chosen parameters have been shown to successfully emulate robotic fish swimming behavior. Based on the proposed control strategy joint-position and velocity tracking results are discussed. They are found to be satisfactory with error magnitudes within permissible bounds.
机译:游鱼在流体环境中表现出令人印象深刻的速度和非凡的特性。本文的目的是模拟机器人机器人中波动的游泳行为及其对体尾鳍(BCF)香兰鱼的控制。在鱼类生物学运动学研究的基础上,提出了一种基于二级行为的分布式控制方案。高级别控制以机器人鱼的游泳行为为模型。它使用Lighthill(LH)体波来生成所需的关节轨迹模式。产生的左手体波受固有运动学参数尾拍频率(TBF)和尾部振幅(CA)的影响,可以对其进行调制以改变轨迹模式。从受鱼记忆(小脑)启发的脑图检索参数信息。该地图存储了从黄鳍金枪鱼运动学研究中获得的有关TBF和CA参数的操作区域信息。根据基于环境的错误反馈信号,机器人鱼图选择显示自适应行为的正确参数值。有限状态机方法已用于对该脑运动图控制进行建模。低级控制使用具有动态PD补偿的基于逆动力学的计算转矩方法(CTM)来实现。它跟踪鱼尾起伏的高级生成和编码模式(轨迹)。已经显示出针对两种选择的参数的三种类型的参数适配成功地模拟了机器人鱼的游泳行为。基于所提出的控制策略,讨论了关节位置和速度跟踪结果。发现它们在允许范围内的误差大小上令人满意。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号