首页> 外文期刊>International Journal of Artificial Intelligence Tools: Architectures, Languages, Algorithms >Speeding up Search-Based Algorithms for Level Generation in Physics-Based Puzzle Games
【24h】

Speeding up Search-Based Algorithms for Level Generation in Physics-Based Puzzle Games

机译:加快基于物理益智游戏中的级别生成的搜索算法

获取原文
获取原文并翻译 | 示例

摘要

This research uses Machine Learning (ML) techniques in order to aid search-based (SB) algorithms to improve level generation for physics-based puzzle games. These algorithms' performance are improved by reducing simulation time when the ML techniques are applied. Classification algorithms prevent levels with undesired traits to be evaluated during the simulation phase of the SB procedures. An Angry Birds clone is used for conducting the experiments and results report improvement using the combined approach against every SB algorithm by itself.
机译:该研究使用机器学习(ML)技术来帮助基于搜索的(SB)算法来改善基于物理的益智游戏的水平生成。 通过降低应用ML技术的仿真时间来提高这些算法的性能。 分类算法防止在SB程序的仿真阶段期间评估不需要的性状的水平。 愤怒的鸟类克隆用于通过本身通过组合方法进行实验和结果报告改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号