首页> 外文期刊>CrystEngComm >Selective growth of zinc blende, wurtzite and hybrid SiC nanowires via a simple chemical vapor deposition route
【24h】

Selective growth of zinc blende, wurtzite and hybrid SiC nanowires via a simple chemical vapor deposition route

机译:通过简单的化学气相沉积途径选择性生长锌熔融锌,紫零和杂交SiC纳米线

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Although more than 250 polytypes of silicon carbide (SiC) crystals have been discovered, only very limited types of nanowires can be synthesized in a controllable manner. Both experimental and theoretical investigation reveal that 3C-SiC is the most stable form, which is the primary product of nanowires synthesized via various methods in thousands of reports. Although hexagonal phases, particularly the wurtzite structure with a bandgap of 3.33 eV is promising in optoelectronic applications, the fabrication of nanowires with theses phases is still rare. Herein, in this study, by precisely regulating the atmospheric conditions, we revealed that the CH4 supply resulted in the phase-selective growth between 3C- and 2H-SiC nanowires. As the CH4 flow rate increased, it was possible to fabricate 3C-SiC, hybrid 3C-/2H-SiC and 2H-SiC nanowires in a controllable manner. The possible mechanism is demonstrated accordingly. We believe this progress benefits the structural design and optoelectronic application of SiC nanowires.
机译:尽管已经发现了250多个碳化硅(SiC)晶体的聚晶体,但是只能以可控的方式合成非常有限的纳米线。实验和理论研究揭示了3C-SiC是最稳定的形式,是纳米线的主要产物通过数千条报告中的各种方法合成。虽然六角形相位,特别是具有3.33eV的带隙的紫立岩结构在光电应用中具有前途,但纳米线与阶段的制造仍然罕见。这里,在本研究中,通过精确地调节大气条件,我们揭示了CH4供应导致3C-和2H-SiC纳米线之间的相位选择性生长。随着CH4流速增加,可以以可控的方式制造3C-SiC,杂合3C-/ 2H-SiC和2H-SiC纳米线。可能的机制是相应的。我们相信这一进步有利于SiC纳米线的结构设计和光电应用。

著录项

  • 来源
    《CrystEngComm》 |2019年第32期|共7页
  • 作者单位

    Sun Yat Sen Zhongshan Univ Key Lab Low Carbon Chem &

    Energy Conservat Guangd Sch Mat Sci &

    Engn State Key Lab Optoelect Mat &

    Technol Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Zhongshan Univ Key Lab Low Carbon Chem &

    Energy Conservat Guangd Sch Mat Sci &

    Engn State Key Lab Optoelect Mat &

    Technol Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Zhongshan Univ Key Lab Low Carbon Chem &

    Energy Conservat Guangd Sch Mat Sci &

    Engn State Key Lab Optoelect Mat &

    Technol Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Zhongshan Univ Key Lab Low Carbon Chem &

    Energy Conservat Guangd Sch Mat Sci &

    Engn State Key Lab Optoelect Mat &

    Technol Guangzhou 510275 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;晶体学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号