首页> 外文学位 >The growth and characterization of III-V semiconductor nanowire arrays by selective area metalorganic chemical vapor deposition.
【24h】

The growth and characterization of III-V semiconductor nanowire arrays by selective area metalorganic chemical vapor deposition.

机译:III-V族半导体纳米线阵列的生长和表征通过选择性区域金属有机化学气相沉积。

获取原文
获取原文并翻译 | 示例

摘要

The interesting properties and potential applications of semiconductor nanowires have received significant attention. Nanoscale selective area growth using MOCVD (NS-SAG) has been demonstrated as an attractive growth technique for compound semiconductor nanowires. With this technique, the diameter and location of wires can be controlled, and no unwanted metal incorporation occurs. This technique is also suitable for large scale uniform nanowire arrays.;Electron beam lithography conditions are optimized to define nano opening arrays for NS-SAG. From this optimization, 25 nm minimum opening diameter and 80 nm center to center spacing features are achieved. InP, GaP, GaAs, and InP nanowire arrays are grown on nano patterned InP (111) and GaAs (111) substrates using NS-SAG. Vertical and uniform InP nanowire arrays are demonstrated on InP (111)A substrates; however, uniform nanowire arrays of GaAs and InAs are achievable only on GaAs and InP (111)B substrates. The surface morphology of InP nanowires is strongly affected by the effective precursor concentration. Enhanced growth in non-polar directions under high precursor concentration disturbs InP nanowire formation. GaAs and InAs NS-SAGs are affected by heterogeneous pyrolysis of arsine and surface diffusion on the sidewalls. The excessive As supply by heterogeneous pyrolysis causes epitaxial burial of nanowires in dense GaAs nanowire arrays and growth rate fluctuations in InAs nanowire arrays. InP nanowires grown in the [111]A direction are in the wurtzite structure at diameters greater than the thermodynamic estimation of the structural transition in diameter. GaAs, InAs, and InP nanowires grown in [111]B direction are in the zincblende structure with rapid stacking fault generation. InAsP and InP/InAs heterostructure nanowire NS-SAG shows the conflict in the preferred growth direction for each binary compound.;A diffusion theory based NS-SAG model is proposed. To reduce the huge computational cost of a vapor phase diffusion simulation of NS-SAG, an average adsorption approximation is proposed. The surface diffusion term is also included to describe the strong diffusion effect induced by the sidewalls. The model predicts the growth rate well, with an average error of 9%, and also predicts a strong surface diffusion effect in GaAs NS-SAG which is consistent with experimental results. The difference of the preferred growth direction, crystal structure transition and stacking fault generation are explained by surface reconstruction of {111} surfaces and the bond strength of III-V and V-V bonds. The presence of the mask and phosphorus trimers, enhances wurtzite stacking of InP nanowires on InP (111)A substrates. GaAs and InAs are prone to grow in [111]B direction because As trimers can be easily dissociated due to weak As-As bonds. Stacking fault generation is also explained by the interaction between surface trimers and adatoms.;Strong artifacts and induced bundling are observed in scanning electron microscopy. By single spot electron beam projection, it is found that the electron beam can pass through the nanowire easily and bundling can propagate along the electron beam path. This induced bundling is explained by attraction between positive charges generated by secondary electron emission and negative charges from the electron beam. From this observation, controlled bundling is demonstrated.
机译:半导体纳米线的有趣的特性和潜在的应用受到了极大的关注。已经证明使用MOCVD(NS-SAG)的纳米级选择性区域生长是一种用于化合物半导体纳米线的有吸引力的生长技术。利用这种技术,可以控制导线的直径和位置,并且不会发生不需要的金属结合。该技术也适用于大规模均匀的纳米线阵列。优化电子束光刻条件以定义用于NS-SAG的纳米开口阵列。通过这种优化,可实现最小25 nm的开口直径和80 nm的中心间距。 InP,GaP,GaAs和InP纳米线阵列使用NS-SAG在纳米图案化的InP(111)和GaAs(111)衬底上生长。在InP(111)A衬底上展示了垂直且均匀的InP纳米线阵列。但是,仅在GaAs和InP(111)B衬底上才能获得均匀的GaAs和InAs纳米线阵列。 InP纳米线的表面形态会受到有效前体浓度的强烈影响。在高前驱物浓度下非极性方向的生长增强会干扰InP纳米线的形成。 GaAs和InAs NS-SAG受by的异质热解和侧壁表面扩散的影响。异质热解提供的过量砷会导致高密度GaAs纳米线阵列中纳米线的外延埋藏以及InAs纳米线阵列中生长速率的波动。沿[111] A方向生长的InP纳米线处于纤锌矿结构中,其直径大于直径的结构转变的热力学估计。沿[111] B方向生长的GaAs,InAs和InP纳米线处于闪锌矿结构中,具有快速堆叠故障产生的能力。 InAsP和InP / InAs异质结构纳米线NS-SAG显示了每种二元化合物在优选生长方向上的冲突。;提出了一种基于扩散理论的NS-SAG模型。为了减少NS-SAG气相扩散模拟的巨大计算成本,提出了平均吸附近似法。还包括表面扩散项以描述侧壁引起的强扩散效应。该模型可以很好地预测生长速率,平均误差为9%,并且还可以预测GaAs NS-SAG中的强表面扩散效应,这与实验结果一致。通过{111}表面的表面重构以及III-V和V-V键的键合强度来解释优选的生长方向,晶体结构转变和堆叠缺陷产生的差异。掩模和磷三聚体的存在增强了InP(111)A衬底上InP纳米线的纤锌矿堆叠。 GaAs和InAs易于在[111] B方向上生长,因为As三聚体由于弱的As-As键很容易解离。堆垛层错的产生还可以通过表面三聚体和吸附原子之间的相互作用来解释。在扫描电子显微镜中观察到了强烈的伪影和诱导的束缚。通过单点电子束投影,发现电子束可以容易地穿过纳米线并且束缚可以沿着电子束路径传播。通过二次电子发射产生的正电荷与电子束的负电荷之间的吸引力来解释这种诱导的束缚。从这个观察结果,证明了受控的捆绑。

著录项

  • 作者

    Chu, Hyung-Joon.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 229 p.
  • 总页数 229
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号