...
首页> 外文期刊>RSC Advances >Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature
【24h】

Toward bandgap tunable graphene oxide nanoribbons by plasma-assisted reduction and defect restoration at low temperature

机译:通过等离子体辅助还原和低温缺陷恢复,通过等离子体辅助减少和缺陷恢复朝向带隙可调谐石墨烯氧化物纳米波动

获取原文
获取原文并翻译 | 示例

摘要

Simultaneous reduction and defect restoration of graphene oxide nanoribbon (GONR) via plasma-assisted chemistry is demonstrated. Hydrogen (H-2) and methane (CH4) gases are continuously dissociated in a plasma to produce atomic hydrogen and carbon-containing ions and radicals carried by the gas flow to react with and remove oxygen functional groups from GONR films. Detailed material characterization confirms that the synergistic effect of simultaneous reduction and defect restoration of GONR occurred during the H-2/CH4 plasma treatment. Extensive optical transmittance measurement suggests that the optical energy gap of the as-treated reduced GONR (r-GONR) can be engineered by controlling the plasma exposure time. Systematic electrical measurement indicates that the electrical conductivity of astreated r-GONR can be enhanced after H-2/CH4-plasma treatment. The unique H-2/CH4-plasma reduction with characteristics of short process time, high purity, and low temperature compared with conventional thermal and chemical reductions suggests that this nonequilibrium chemical approach can be used for industrial-scale reduction of GONR and graphene oxide (GO).
机译:通过等离子体辅助化学表明石墨烯纳米波(GONR)的同时减少和缺陷恢复。氢气(H-2)和甲烷(CH 4)气体在等离子体中连续解离,以产生原子氢和含碳离子和由气流携带的碳离子,以与来自GONR膜一起去除氧官能团的气流。详细的材料表征证实,在H-2 / CH4等离子体处理期间发生同时降低和缺陷恢复的协同效应。广泛的光学透射率测量表明,可以通过控制等离子体暴露时间来设计所处理的减少的GONR(R-GONR)的光学能隙。系统电气测量表明,在H-2 / CH 4 - 等离子体处理后,可以提高天生的R-GONR的电导率。与常规热和化学减少相比,具有短工艺时间,高纯度和低温的特性的独特的H-2 / CH4 - 等离子体降低表明,这种非化学方法可用于工业规模降低(氧化石墨烯)(走)。

著录项

  • 来源
    《RSC Advances 》 |2016年第3期| 共9页
  • 作者单位

    Natl Taiwan Univ Sci &

    Technol Dept Chem Engn Taipei 10607 Taiwan;

    Natl Chung Hsing Univ Dept Elect Engn Taichung 402 Taiwan;

    Natl Taiwan Univ Sci &

    Technol Dept Chem Engn Taipei 10607 Taiwan;

    Natl Chung Hsing Univ Grad Inst Optoelect Engn Taichung 402 Taiwan;

    Natl Chung Hsing Univ Dept Elect Engn Taichung 402 Taiwan;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号