首页> 外文期刊>Nanotechnology >Plasmon-enhanced photocatalytic activity of Na0.9Mg0.45Ti3.55O8 loaded with noble metals directly observed with scanning Kelvin probe microscopy
【24h】

Plasmon-enhanced photocatalytic activity of Na0.9Mg0.45Ti3.55O8 loaded with noble metals directly observed with scanning Kelvin probe microscopy

机译:用扫描kelvin探针显微镜显微镜直接观察到含有贵金属的Na0.9mg0.45Ti3.508的等离子体增强的光催化活性

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The noble metals Au, Ag and Pt were loaded onto Na0.9Mg0.45Ti3.55O8 (NMTO) using a chemical bath deposition method devised in our recent work for the first time. The composite photocatalysts exhibit more effective photodegradation of methylene blue, due to the Schottky barrier built between NMTO and noble metal. Hot electrons generated during localized surface plasmon processes in metal nanoparticles transfer to the semiconductor, manifesting as a depression of surface potential directly detectable by scanning Kelvin probe microscopy. The key factor responsible for the improved ability of semiconductor-based photocatalysts is charge separation. The most effective weight concentrations of Au, Ag and Pt loaded onto NMTO were found to be 5.00%, 12.6% and 5.55% respectively. NMTO loaded with noble metals shows good photostability and recyclability for the degradation of methylene blue. A possible mechanism for the photodegradation of methylene blue over NMTO loaded with noble metals is proposed. This work highlights the potential application of NMTO-based photocatalysts, and provides an effective method to detect localized surface plasmons.
机译:使用在我们最近的工作中首次制定的化学浴沉积方法,将贵金属Au,Ag和Pt加载到Na0.9mg0.45Ti3.55O8(NMTO)上。由于在NMTO和贵金属之间构建的肖特基屏障,复合光催化剂具有更有效的亚甲基蓝光降解。在局部表面等离子体过程中产生的热电子在金属纳米颗粒转移到半导体中,表现为通过扫描开尔文探针显微镜直接检测的表面电位的凹陷。负责半导体基光催化剂的改善能力的关键因素是电荷分离。发现最有效的Au,Ag和Pt的重量浓度分别为5.00%,12.6%和5.55%。用贵金属装载NMTO显示出良好的光稳定性和用于亚甲基蓝的降解的可回收性。提出了一种在NMTO上加载惰性金属的亚甲基蓝光降解的可能机制。这项工作突出了基于NMTO的光催化剂的潜在应用,并提供了检测局部表面等离子体的有效方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号