【24h】

How to achieve maximum charge carrier loading on heteroatom-substituted graphene nanoribbon edges: density functional theory study

机译:如何在杂原子取代的石墨烯纳米带边缘上实现最大载流子负载:密度泛函理论研究

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

The practical number of charge carriers loaded is crucial to the evaluation of the capacity performance of carbon-based electrodes in service, and cannot be easily addressed experimentally. In this paper, we report a density functional theory study of charge carrier adsorption onto zigzag edge-shaped graphene nanoribbons (ZGNRs), both pristine and incorporating edge substitution with boron, nitrogen or oxygen atoms. All edge substitutions are found to be energetically favorable, especially in oxidized environments. The maximal loading of protons onto the substituted ZGNR edges obeys a rule of [8-n-1],where n is the number of valence electrons of the edge-site atom constituting the adsorption site. Hence, a maximum charge loading is achieved with boron substitution. This result correlates in a transparent manner with the electronic structure characteristics of the edge atom. The boron edge atom, characterized by the most empty p band, facilitates more than the other substitutional cases the accommodation of valence electrons transferred from the ribbon, induced by adsorption of protons. This result not only further confirms the possibility of enhancing charge storage performance of carbon-based electrochemical devices through chemical functionalization but also, more importantly, provides the physical rationale for further design strategies.
机译:加载的载流子的实际数量对于评估使用中的碳基电极的容量性能至关重要,因此无法通过实验轻松解决。在本文中,我们报告了密度功能理论研究,研究了电荷载体吸附到锯齿形的边缘形石墨烯纳米带(ZGNRs)上的过程,该带既是原始的,也具有被硼,氮或氧原子取代的边缘。发现所有边缘取代在能量上都是有利的,尤其是在氧化环境中。质子在取代的ZGNR边缘上的最大负载遵循规则[8-n-1],其中n是构成吸附位点的边缘位点原子的价电子数。因此,用硼取代获得最大的电荷负载。该结果以透明的方式与边缘原子的电子结构特征相关。硼边缘原子的特征是最空的p带,比其他替代情况更容易容纳由质子吸附引起的从带状体转移的价电子。该结果不仅进一步证实了通过化学官能化增强碳基电化学装置的电荷存储性能的可能性,而且更重要的是,为进一步的设计策略提供了物理原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号