首页> 美国卫生研究院文献>Scientific Reports >Hydrogen Adsorption on Nearly Zigzag-Edged Nanoribbons: A Density Functional Theory Study
【2h】

Hydrogen Adsorption on Nearly Zigzag-Edged Nanoribbons: A Density Functional Theory Study

机译:几乎曲折边缘的纳米带上的氢吸附:密度泛函理论研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The realistic shapes of N doped graphene nanoribbons (GNRs) can be realized by considering nearly zigzag-edged (NZE) imperfections and pyridine defects (3NV). The paper focuses on NZE-GNRs with 3NV that is populated by Scandium abbreviated as Sc/NZE-3NVGNRs. Systematic calculations have clarified roles of the nano-shapes of NZE-3NVGNRs in its formation, energetics, stability and electron states functionalized with Sc using density functional theory (DFT) formalisms. According to DFT calculations, the magnitude of the spin that is attributed to the rise of magnetic order is closely linked to the altered shape of the ribbon edges. Also, calculations show that the stability of Sc functionalization at the 3NV and NZE site is thermodynamically stable and is dictated by a strong binding energy (BE). The magnitude of the BE is enhanced when the zigzag edge is short or the ribbon width is narrow, suggesting a reduced clustering of Sc atoms over the Sc-doped NZE-3NVGNRs. Results also show that as the length of the zigzag edge in Sc/NZE-3NVGNRs increases it creates considerable distortion on the appearance of the structure. Finally, the Sc/NZE-3NVGNRs as a potential candidate for hydrogen storage was evaluated and it was found that it could adsorb multiple hydrogen molecules.
机译:N掺杂的石墨烯纳米带(GNR)的真实形状可以通过考虑接近锯齿形(NZE)的缺陷和吡啶缺陷(3NV)来实现。本文重点介绍由with(缩写为Sc / NZE-3NVGNR)组成的3NV的NZE-GNR。系统的计算已经阐明了NZE-3NVGNR的纳米形状在其形成,能量学,稳定性和使用Sc进行密度泛函理论(DFT)形式化的电子态中的作用。根据DFT计算,归因于磁阶上升的自旋幅度与色带边缘形状的变化密切相关。此外,计算表明,在3NV和NZE位置处Sc官能化的稳定性是热力学稳定的,并且受强大的结合能(BE)支配。当之字形边缘短或条带宽度窄时,BE的强度会增加,这表明Sc掺杂的NZE-3NVGNRs上Sc原子的聚集减少。结果还表明,随着Sc / NZE-3NVGNR中锯齿形边缘的长度增加,它会在结构外观上产生可观的变形。最后,评估了Sc / NZE-3NVGNRs作为储氢的潜在候选物,发现它可以吸附多个氢分子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号