首页> 外文学位 >Mercury-containing species and carbon dioxide adsorption studies on inorganic compounds using density functional theory.
【24h】

Mercury-containing species and carbon dioxide adsorption studies on inorganic compounds using density functional theory.

机译:使用密度泛函理论研究含汞物质和二氧化碳对无机化合物的吸附。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this research is to obtain the adsorption mechanisms of toxic mercury-containing species (Hg, HgCl and HgCl2) and carbon dioxide (CO2) on inorganic solid surfaces using theoretically predicted results because experiments have been unable to unravel the involved issues. The understanding of the adsorption mechanisms of the mercury species and carbon dioxide from flue gases is important when considering mercury capture from coal-fired power plants, artisanal gold mining, and cement manufacturing industries. The current research attempts to explain each adsorption mechanism for mercury species, and those for carbon dioxide adsorption, on the surfaces through optimized geometries, energies and thermodynamic data. To investigate this research, density functional theory, which is one of useful tools for analyzing reactions on solid surfaces, was used to determine first principles-based theoretical adsorption models. Mainly, results from computational work indicate that mercury-containing species and carbon dioxide adsorption on calcium oxide surfaces and elemental mercury adsorption on a gehlenite surface are exothermic reactions. Calcium oxide is a promising adsorbent for oxidized mercury (HgCl and HgCl2), but not for elemental Hg. Interestingly, the elemental mercury, which is the major form (> 90%) in the flue gases of the coal-combustion power plants, is chemisorbed on a gehlenite surface, which is partially composed of calcium oxide and comes from a mineral transition at high temperature. Strong adsorption on this inorganic sorbent is enhanced at high temperatures even though this adsorption process is exothermic. In addition, CaO surfaces are effective at capturing CO2, generating calcium carbonate compounds at flue gas temperatures, and water vapor enhances its adsorbability due to a larger CO2 adsorption energy. The current research shows that inorganic sorbents are not only effective in removing the elemental and oxidized forms of mercury but also in mineralizing CO2 at high temperatures into a solid form. The mercury species and carbon dioxide adsorption mechanisms investigated in this research may be utilized in the application of more efficient mercury and carbon dioxide control technologies. Future work will examine the reaction transition state and predict the kinetic data of the carbonation reactions, and, additionally, may prove the hypothesis that H2O molecules play a role as catalysts, increasing reaction rates.
机译:这项研究的目的是使用理论上的预测结果来获得有毒的含汞物质(Hg,HgCl和HgCl2)和二氧化碳(CO2)在无机固体表面上的吸附机理,因为实验无法解决所涉及的问题。在考虑从燃煤电厂,手工金矿开采和水泥制造行业捕获汞时,了解烟气中汞物种和二氧化碳的吸附机理非常重要。当前的研究试图通过优化的几何形状,能量和热力学数据来解释表面上汞的每种吸附机理以及二氧化碳的吸附机理。为了调查这项研究,密度泛函理论是分析固体表面反应的有用工具之一,用于确定基于第一原理的理论吸附模型。主要来自计算工作的结果表明,含汞物质和二氧化碳在氧化钙表面的吸附以及单质汞在粗晶石表面的吸附都是放热反应。氧化钙是一种有前景的吸附剂,用于氧化汞(HgCl和HgCl2),而不是元素汞。有趣的是,作为汞的主要形式(> 90%)是燃煤电厂烟气中的主要汞,其化学吸附在钠钙石表面上,该钠钙石表面部分由氧化钙组成,来自高矿物含量的过渡。温度。即使该吸附过程是放热的,在高温下也增强了对该无机吸附剂的强吸附。另外,CaO表面有效地捕获CO 2,在烟道气温度下产生碳酸钙化合物,并且由于更大的CO 2吸附能,水蒸气增强了其吸附能力。当前的研究表明,无机吸附剂不仅可以有效去除汞的元素形式和氧化形式,而且还可以在高温下将二氧化碳矿化成固体形式。本研究中研究的汞种类和二氧化碳吸附机制可用于更有效的汞和二氧化碳控制技术的应用中。未来的工作将检查反应的过渡状态并预测碳酸化反应的动力学数据,此外,还可以证明H2O分子起催化剂作用,增加反应速率的假设。

著录项

  • 作者

    Kim, Bo Gyeong.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Environmental Studies.;Engineering Chemical.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号