首页> 外文期刊>Biochemistry >First-Principles Molecular Dynamics Investigation of the D-Amino Acid Oxidative Half-Reaction Catalyzed by the Flavoenzyme D-Amino Acid Oxidase
【24h】

First-Principles Molecular Dynamics Investigation of the D-Amino Acid Oxidative Half-Reaction Catalyzed by the Flavoenzyme D-Amino Acid Oxidase

机译:黄素酶D-氨基酸氧化酶催化的D-氨基酸氧化半反应的第一性原理分子动力学研究

获取原文
获取原文并翻译 | 示例
           

摘要

Large-scale Car-Parrinello molecular dynamics simulations of D-alanine oxidation catalyzed by the flavoenzyme D-amino acid oxidase have been carried out. A model of the enzyme active site was built by starting from the enzyme X-ray structure, and by testing diffeerent subsystems comprising different sets of aminoacyl residues. In this process, the stability of the enzyme-substrate complex was taken as a measure of the accuracy of the model. The activated transfer of the amino acid alpha-hydrogen from the substrate to the flavin N5 position was then induced by constraining a suitable transfer reaction coordinate, and the free energy profile of the reaction was calculated. The evolution of electronic and structural properties of both enzyme-bound substrate and flavin cofactor along the reaction path is consistent with a hydride-transfer mechanism. The calculated free energy barrier for this process (13 kcal/mol) is in excellent agreement with the activation energy value derived fromthe experimentally determined rate constant for the corresponding enzyme-catalyzed reaction. The electronic distribution of the reduced flavin shows that the transferred electrons tend to be centered near the C4a position rather than delocalized over the flavin pyrimidine ring. This feature is mechanistically relevant in that such an electronic distribution may promote the subsequent enzyme-catalyzed reduction of molecular oxygen to yield hydrogen peroxide via a postulated flavin 4a-peroxide intermediate. These results also show that a first-principles molecular dynamics approach is suitable to study the mechanism of complex enzymatic processes, provided that a smaller, ye reliable, subsystem of the enzyme can be identified, and special computational techniques are employed to enhance the sampling of the reactive event.
机译:黄酮酶D-氨基酸氧化酶催化的D-丙氨酸氧化的大规模Car-Parrinello分子动力学模拟。通过从酶的X射线结构开始,并测试包含不同组氨酰基残基的不同子系统,建立了酶活性位点的模型。在此过程中,酶-底物复合物的稳定性被用作模型准确性的量度。然后通过限制合适的转移反应坐标,诱导氨基酸α-氢从底物到黄素N5的活化转移,并计算反应的自由能分布。酶结合的底物和黄素辅因子沿反应路径的电子和结构性质的演变与氢化物转移机理一致。计算出的该过程的自由能势垒(13 kcal / mol)与从实验确定的相应酶催化反应速率常数得出的活化能值非常一致。还原的黄素的电子分布表明,转移的电子倾向于集中在C4a位置附近,而不是在黄素嘧啶环上离域。该特征在机械上是相关的,因为这种电子分布可以促进随后的酶催化的分子氧还原,从而通过假定的黄素4a-过氧化物中间体产生过氧化氢。这些结果还表明,只要可以识别出较小的,可靠的酶子系统,并且采用特殊的计算技术来增强酶的采样,则第一原理的分子动力学方法适合研究复杂的酶促过程的机理。反应事件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号