【24h】

Probing high-energy ion-implanted silicon by micro-Raman spectroscopy

机译:显微拉曼光谱探测高能离子注入硅

获取原文
获取原文并翻译 | 示例
           

摘要

The effect of ion implantation (4MeV~(12)C~(2+), 5MeV~(16)O~(2+), and 8MeV~(28)Si~(2+)) on [110] silicon wafers in channeling and random orientation is investigated by micro-Raman spectroscopy. The profiles were measured using Scanning Electron Microscope (SEM) showing that the ions were penetrating deeper inside the wafer in the channeling case creating a 1-2 μm wide strongly modified region and agreeing with the d-nuclear reaction analysis measurements. Micro-Raman spectroscopy was employed for the assessment of the lattice damage, probing the side surface of the cleaved wafers at submicron step. The phonon modifications show strong lattice distortions in zones parallel to the front surface of the wafers and at depths, which agree with the results of the characterization techniques. In these strongly damaged zones, there is a substantial reduction in the phonon intensity, a small shift in wavenumber position, and a large increase in the phonon width. On the basis of a modification of the phonon confinement model that takes under consideration the laser beam profile, the reduction in intensity of scattered light, and the nanocrystallite size distribution from the simulation of the lattice displacements, the main characteristics of the Raman spectra could be reproduced for the random C and O implantations. The results indicate that at a critical doping level, the induced defects and lattice distortions relax by breaking the silicon single crystal into nanocrystallites, thus creating the observed zones of strongly distorted lattice.
机译:在[110]硅晶片上离子注入(4MeV〜(12)C〜(2 +),5MeV〜(16)O〜(2+)和8MeV〜(28)Si〜(2+))的影响通过显微拉曼光谱研究通道和随机取向。使用扫描电子显微镜(SEM)测量轮廓,结果显示离子在通道情况下更深地渗透到晶圆内部,从而形成1-2μm宽的强修饰区域,并与d核反应分析测量结果一致。显微拉曼光谱法用于评估晶格损伤,并在亚微米级探测被劈开的晶片的侧面。声子变体在平行于晶片前表面的区域和深度处显示出强烈的晶格畸变,这与表征技术的结果一致。在这些严重损坏的区域中,声子强度显着降低,波数位置的位移很小,并且声子宽度大大增加。在对声子限制模型进行修改的基础上,考虑到激光束轮廓,散射光强度的降低以及通过模拟晶格位移而得到的纳米微晶尺寸分布,拉曼光谱的主要特征可能是复制用于随机C和O植入。结果表明,在临界掺杂水平下,通过将硅单晶破碎成纳米微晶,可以消除诱发的缺陷和晶格畸变,从而创建观察到的强烈扭曲的晶格区域。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号