...
首页> 外文期刊>Journal of Neuroscience Research >Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain.
【24h】

Regulation of human glutamate dehydrogenases: implications for glutamate, ammonia and energy metabolism in brain.

机译:人谷氨酸脱氢酶的调节:对谷氨酸,氨和脑中的能量代谢的影响。

获取原文
获取原文并翻译 | 示例

摘要

Glutamate dehydrogenase (GDH) catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate using NAD or NADP as cofactors. In mammalian brain, GDH is located predominantly in astrocytes, where it is probably involved in the metabolism of transmitter glutamate. The exact mechanisms that regulate glutamate fluxes through this pathway, however, have not been fully understood. In the human, GDH exists in heat-resistant and heat-labile isoforms, encoded by the GLUD1 (housekeeping) and GLUD2 (nerve tissue-specific) genes, respectively. These forms differ in their catalytic and allosteric properties. Kinetic studies showed that the K(m) value for glutamate for the nerve tissue GDH is within the range of glutamate levels in astrocytes (2.43 mM), whereas for the housekeeping enzyme, this value is significantly higher (7.64 mM; P < 0.01). The allosteric activators ADP (0.1-1.0 mM) and L-leucine (1.0-10.0 mM) induce a concentration-dependent enzyme stimulation that is proportionally greater for the nerve tissue-specific GDH (up to 1,600%) than for the housekeeping enzyme (up to 150%). When used together at lower concentrations, ADP (10-50 mM) and L-leucine (75-200 microM) act synergistically in stimulating GDH activity. GTP exerts a powerful inhibitory effect (IC(50) = 0.20 mM) on the housekeeping GDH; in contrast, the nerve tissue isoenzyme is resistant to GTP inhibition. Thus, although the housekeeping GDH is regulated primarily by GTP, the nerve tissue GDH activity depends largely on available ADP or L-leucine levels. Conditions associated with enhanced hydrolysis of ATP to ADP (e.g., intense glutamatergic transmission) are likely to activate nerve tissue-specific GDH leading to an increased glutamate flux through this pathway. Copyright 2001 Wiley-Liss, Inc.
机译:谷氨酸脱氢酶(GDH)使用NAD或NADP作为辅因子催化将谷氨酸氧化脱氨为α-酮戊二酸。在哺乳动物的大脑中,GDH主要位于星形胶质细胞中,可能与递质谷氨酸的代谢有关。然而,尚未完全了解调节通过该途径的谷氨酸通量的确切机制。在人类中,GDH存在于耐热和对热不稳定的同工型中,分别由GLUD1(管家)和GLUD2(神经组织特异性)基因编码。这些形式的催化和变构性质不同。动力学研究表明,神经组织GDH的谷氨酸K(m)值在星形胶质细胞的谷氨酸水平范围内(2.43 mM),而对于看家酶,该值明显更高(7.64 mM; P <0.01) 。变构活化剂ADP(0.1-1.0 mM)和L-亮氨酸(1.0-10.0 mM)诱导浓度依赖性酶刺激,神经组织特异性GDH(高达1600%)的比例依赖于管家酶(高达150%)。当以较低的浓度一起使用时,ADP(10-50 mM)和L-亮氨酸(75-200 microM)在刺激GDH活性中起协同作用。 GTP对管家GDH具有强大的抑制作用(IC(50)= 0.20 mM);相反,神经组织同工酶对GTP抑制有抵抗力。因此,尽管管家GDH主要受GTP调节,但神经组织GDH活性在很大程度上取决于可利用的ADP或L-亮氨酸水平。与ATP水解为ADP增强水解相关的条件(例如强烈的谷氨酸能传递)可能会激活神经组织特异性GDH,从而导致通过该途径的谷氨酸通量增加。版权所有2001 Wiley-Liss,Inc.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号