首页> 外文期刊>Journal of Multivariate Analysis: An International Journal >A multivariate empirical characteristic function test of independence with normal marginals
【24h】

A multivariate empirical characteristic function test of independence with normal marginals

机译:具有正常边际的独立性的多元经验特征函数检验

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a semi-parametric test of independence (or serial independence) between marginal vectors each of which is normally distributed but without assuming the joint normality of these marginal vectors. The test statistic is a Cramer-von Mises functional of a process defined from the empirical characteristic function. This process is defined similarly as the process of Ghoudi et al. [J. Multivariate Anal. 79 (2001) 191] built from the empirical distribution function and used to test for independence between univariate marginal variables. The test statistic can be represented as a V-statistic. It is consistent to detect any form of dependence. The weak convergence of the process is derived. The asymptotic distribution of the Cramer-von Mises functionals is approximated by the Cornish-Fisher expansion using a recursive formula for cumulants and inversion of the characteristic function with numerical evaluation of the eigenvalues. The test statistic is finally compared with Wilks statistic for testing the parametric hypothesis of independence in the one-way MANOVA model with random effects. (C) 2004 Elsevier Inc. All rights reserved.
机译:本文提出了一个边缘参数之间的独立性(或序列独立性)的半参数检验,每个边缘向量都是正态分布的,但不假设这些边缘向量的联合正态性。检验统计量是根据经验特征函数定义的过程的Cramer-von Mises函数。该过程的定义与Ghoudi等人的过程类似。 [J.多变量肛门。 79(2001)191]是根据经验分布函数构建的,用于检验单变量边际变量之间的独立性。测试统计量可以表示为V统计量。检测任何形式的依赖关系都是一致的。得出过程的弱收敛。 Cramer-von Mises泛函的渐近分布可以通过使用累积量的递归公式通过康沃尔-菲舍尔展开和特征值的反演与特征值的数值估算来近似。最后,将检验统计量与Wilks统计量进行比较,以检验具有随机效应的单向MANOVA模型中独立性的参数假设。 (C)2004 Elsevier Inc.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号