首页> 外文期刊>Journal of Biomechanics >Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty.
【24h】

Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty.

机译:预测对血管内治疗的反应:剖析局部病变的复杂性,全身合并症和临床不确定性的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

Through decades of use and refinement, endovascular stents have become part and parcel of the management of obstructive atherosclerotic lesions. Upon stent placement, a variety of biophysical reactions ensue, governed not only by the mechanical and material properties of the device, but also the impact these properties have on the local vascular biology. Anatomic changes and vascular deformations give rise to solid mechanical and fluid forces that are the proximate, functional drivers of the induced reparative response. Powerful computational tools and advanced imaging techniques allow us to define these forces with high precision and increasingly, at a patient-specific level. We have also gained fundamental insights into how these forces influence subcellular and cellular processes, and, through application of a variety of model systems, how they subsequently drive an integrated tissue response. Clinical studies extend understanding to actual patients and pathophysiologic scenarios. These tools and insights take on added weight given the real risks that accompany the many substantial benefits of stenting. Complex lesions remain difficult to manage and continue to be associated with worse outcomes. While many patients respond well to treatment, others suffer treatment failures and recurrent events - sometimes catastrophic. Overcoming such variability requires that we move towards individualized treatment plans. Doing so necessitates that we develop not just a qualitative understanding of involved phenomena, but a quantitative ability to predict integrated outcomes. Given the multi-scale nature of the vascular response to stenting, it is critical that models, be they computational, bench-top, animal, or clinical, can be verified, validated, and made interrelated. This review provides an overview of the biophysics governing endovascular stenting, their integration in real-world endovascular settings, and how simulation and statistical approaches are helping to bridge the gap between qualitative model understanding and quantitative clinical prediction.
机译:经过数十年的使用和完善,血管内支架已成为阻塞性动脉粥样硬化病变管理的重要组成部分。放置支架后,会发生各种生物物理反应,不仅由器械的机械和材料特性决定,而且还受到这些特性对局部血管生物学的影响。解剖学变化和血管变形会产生固体机械力和流体力,它们是诱导的修复反应的近端功能驱动因素。强大的计算工具和先进的成像技术使我们能够在患者特定的水平上以越来越高的精度定义这些作用力。我们还获得了关于这些力如何影响亚细胞和细胞过程的基本见识,并且通过应用各种模型系统,它们随后如何驱动整合的组织反应。临床研究将了解扩展到实际患者和病理生理情况。考虑到支架植入带来的许多实质性好处带来的实际风险,这些工具和见解会增加重量。复杂的病变仍然难以控制,并继续与较差的结果相关。尽管许多患者对治疗反应良好,但其他患者则遭受治疗失败和复发事件的影响,有时甚至是灾难性的。克服这种可变性需要我们朝着个性化的治疗计划迈进。这样做有必要使我们不仅对所涉及的现象有定性的理解,而且要有预测综合结果的定量能力。考虑到血管对支架反应的多尺度性质,至关重要的是,模型(无论是计算模型,台式模型,动物模型或临床模型)都可以进行验证,验证和相互关联。这篇综述概述了控制血管内支架置入的生物物理学,它们在现实世界中血管内设置中的集成以及模拟和统计方法如何帮助弥合定性模型理解与定量临床预测之间的差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号