首页> 外文期刊>Journal of Biomechanics >Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty.
【24h】

Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty.

机译:预测对血管内疗法的反应:对局部病变复杂性,全身合并率和临床不确定性的作用。

获取原文
获取原文并翻译 | 示例
           

摘要

Through decades of use and refinement, endovascular stents have become part and parcel of the management of obstructive atherosclerotic lesions. Upon stent placement, a variety of biophysical reactions ensue, governed not only by the mechanical and material properties of the device, but also the impact these properties have on the local vascular biology. Anatomic changes and vascular deformations give rise to solid mechanical and fluid forces that are the proximate, functional drivers of the induced reparative response. Powerful computational tools and advanced imaging techniques allow us to define these forces with high precision and increasingly, at a patient-specific level. We have also gained fundamental insights into how these forces influence subcellular and cellular processes, and, through application of a variety of model systems, how they subsequently drive an integrated tissue response. Clinical studies extend understanding to actual patients and pathophysiologic scenarios. These tools and insights take on added weight given the real risks that accompany the many substantial benefits of stenting. Complex lesions remain difficult to manage and continue to be associated with worse outcomes. While many patients respond well to treatment, others suffer treatment failures and recurrent events - sometimes catastrophic. Overcoming such variability requires that we move towards individualized treatment plans. Doing so necessitates that we develop not just a qualitative understanding of involved phenomena, but a quantitative ability to predict integrated outcomes. Given the multi-scale nature of the vascular response to stenting, it is critical that models, be they computational, bench-top, animal, or clinical, can be verified, validated, and made interrelated. This review provides an overview of the biophysics governing endovascular stenting, their integration in real-world endovascular settings, and how simulation and statistical approaches are helping to bridge the gap between qualitative model understanding and quantitative clinical prediction.
机译:通过数十年的使用和改进,血管内支架已成为阻塞性动脉粥样硬化病变管理的一部分和包裹。在支架放置时,随之而来的各种生物物理反应,不仅通过装置的机械和材料性能而定,而且对局部血管生物学的影响也是影响。解剖学变化和血管变形产生了诱导的修复反应的近似功能驱动因素的固体机械和流体力。强大的计算工具和高级成像技术允许我们以高精度和越来越多地定义这些力,越来越多地在患者特定的水平。我们还获得了对这些力量影响亚细胞和细胞过程的根本洞察,并且通过应用各种模型系统,它们随后如何驱动集成的组织反应。临床研究会延长对实际患者和病理物理学情景的理解。鉴于伴随着抵销的实际风险,这些工具和见解提高了额外的重量。复杂的病变仍然难以管理,并继续与更严重的结果相关联。虽然许多患者对治疗做好良好,但其他患者遭受治疗失败和经常发生的事件 - 有时灾难性。克服这种可变性要求我们走向个性化的治疗计划。这样做需要我们不仅仅是对涉及现象的定性理解,而且是预测综合结果的定量能力。鉴于血管反应对支架的多尺度性质,可以验证,验证模型,验证,验证和临床,至关重要。本综述概述了治疗血管内支架的生物物理学,它们在现实世界血管内设置的整合以及模拟和统计方法如何帮助弥合定性模型理解和定量临床预测之间的差距。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号