首页> 外文期刊>Ultramicroscopy >Quantitative three-dimensional carrier mapping in nanowire-based transistors using scanning spreading resistance microscopy
【24h】

Quantitative three-dimensional carrier mapping in nanowire-based transistors using scanning spreading resistance microscopy

机译:使用扫描扩展电阻显微镜的纳米线晶体管中的定量三维载流子映射

获取原文
获取原文并翻译 | 示例
           

摘要

The performance of nanoelectronic devices critically depends on the distribution of charge carriers inside such structures. High-vacuum scanning spreading resistance microscopy (HV-SSRM) has established as the method of choice for quantitative 2D-carrier mapping in nanoscale devices during the last decade. However, due to the 3D-nature of these nanoscale device architectures, dopant incorporation and dopant diffusion mechanisms can vary for any of the three dimensions, depending on the particular processes used. Therefore, mapping of carriers in three dimensions with high spatial resolution is inevitable to study and understand the distribution of active dopants in confined 3D-volumes and ultimately to support the process development of next generation devices. In this work, we present for the first time an approach to extend the capabilities of SSRM from an inherent 2D-carrier profiling technique towards a quantitative 3D-characterization technique based on the example of a nanowire (NW)-based heterojunction (SiGe-Si) tunneling transistor. In order to implement a 3D-methodology with a 2D-imaging technique, we acquired 2D-carrier concentration maps on successive cross-section planes through the device of interest. This was facilitated by arranging several devices in a staggered array, allowing to produce a series of cross-sections with incremental offset by a single cleave. A dedicated interpolation algorithm especially suited for structures with rotational symmetry like NWs was developed in order to reconstruct a 3D-carrier distribution map. The validity of the method was assessed by proving the absence of variations in carrier distribution in the third dimension, as expected for NWs etched into a blanket stack.
机译:纳米电子器件的性能关键取决于这种结构内部电荷载流子的分布。在过去的十年中,高真空扫描扩散电阻显微镜(HV-SSRM)已成为在纳米级设备中定量2D载流子作图的选择方法。但是,由于这些纳米级器件架构的3D性质,根据所使用的特定工艺,对于三个维度中的任何一个,掺杂剂的掺入和掺杂剂扩散机制都可能发生变化。因此,为了研究和理解有限的3D体积中活性掺杂剂的分布,不可避免地需要以高空间分辨率在三维上绘制载流子,并最终支持下一代设备的工艺开发。在这项工作中,我们首次基于基于纳米线(NW)的异质结(SiGe-Si)的示例,首次提出了将SSRM的功能从固有的2D载波分析技术扩展到定量3D表征技术的方法。 )隧道晶体管。为了用2D成像技术实现3D方法,我们通过感兴趣的设备获取了连续横截面上的2D载流子浓度图。通过以交错阵列的形式排列几个设备,可以方便地进行此操作,从而可以产生一系列横截面,这些横截面的偏移量可以通过一次劈裂来增加。为了重建3D载波分布图,开发了一种特别适用于旋转对称结构(如NW)的专用插值算法。该方法的有效性通过证明在第三维上没有载流子分布的变化来评估,正如蚀刻到毯状叠层中的NW所期望的那样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号