首页> 外文学位 >III-V compound semiconductor dopant profiling using scanning spreading resistance microscopy.
【24h】

III-V compound semiconductor dopant profiling using scanning spreading resistance microscopy.

机译:使用扫描扩展电阻显微镜对III-V型化合物半导体掺杂剂进行分析。

获取原文
获取原文并翻译 | 示例

摘要

With the rapid growth of the optoelectronics industry, a new generation of analytical tools is required to satisfy the need for a fast and quantitative method for two-dimensional carrier concentration profiling with nanometer resolution on III-V compound semiconductors. A modified atomic force microscopy technique known as Scanning Spreading Resistance Microscopy (SSRM) has the potential to satisfy these requirements.; This work examines the usefulness of the SSRM techniques for application towards III-V optoelectronic devices. Measurements have been carried out on MBE-grown GaAs and InP dopant calibration samples. The current transport mechanisms between the diamond-coated SSRM tip and the III-V semiconductor cleaved surface (110) was investigated as a function of semiconductor dopant concentration via current-voltage (I-V) measurement. A positive or negative tip bias was applied while scanning over a wide range of dopant concentrations spanning 1016–1019 cm−3. The results were compared to simulated I-V curves based on thermionic emission theory. The best fits to the data obtained under forward bias indicated that the contact barrier heights, &phis;B, were much lower than expected from conventional large area planar contacts to GaAs or InP. Barrier height lowering mechanisms due to image forces, thermionic field emission, and minority carrier injection are hypothesized to be responsible for the low barrier height values and their dependence on doping concentration. Under reverse bias, the theory better fits the results obtained for n-type InP and p-type GaAs compared to the larger barrier systems p-type InP and n-type GaAs, where the recombination-generation of carriers play an important role in the overall current.; It will be shown that only with the aid of staircase calibration structures based on a secondary calibration standard such as SIMS is it possible to use SSRM as a semi-reliable tool for two-dimensional dopant profiling of III-V compound semiconductors.
机译:随着光电子工业的快速发展,需要新一代的分析工具来满足对III-V化合物半导体上具有纳米分辨率的二维载流子浓度分布进行纳米级分辨率的快速定​​量方法的需求。一种改进的原子力显微镜技术,称为扫描扩展电阻显微镜(SSRM),有可能满足这些要求。这项工作研究了SSRM技术在III-V光电设备中的实用性。已经对MBE生长的GaAs和InP掺杂物校准样品进行了测量。通过电流-电压(I-V)测量,研究了金刚石涂层的SSRM尖端和III-V型半导体劈裂表面(110)之间的电流传输机制,该过程是半导体掺杂剂浓度的函数。在扫描10 16 –10 19 cm -3 宽范围的掺杂剂浓度时,施加正或负尖端偏压。将结果与基于热电子发射理论的模拟I-V曲线进行比较。与在正向偏置下获得的数据的最佳拟合表明,接触势垒高度φB远低于常规大面积平面接触GaAs或InP的预期。假设由于图像力,热电子场发射和少数载流子注入引起的势垒高度降低机制是低势垒高度值及其对掺杂浓度的依赖性的原因。在反向偏置下,与较大的势垒系统p型InP和n型GaAs相比,该理论更好地拟合了n型InP和p型GaAs的结果,在较大的势垒系统中,载流子的重组产生在N型InP和p型GaAs中起着重要作用。总电流。将会显示出,只有借助基于二次校准标准(例如SIMS)的阶梯校准结构,才可能将SSRM用作用于III-V化合物半导体二维掺杂物轮廓分析的半可靠工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号