首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Thermal Switching Error Versus Delay Tradeoffs in Clocked QCA Circuits
【24h】

Thermal Switching Error Versus Delay Tradeoffs in Clocked QCA Circuits

机译:时钟QCA电路中的热开关误差与延迟权衡

获取原文
获取原文并翻译 | 示例

摘要

The quantum-dot cellular automata (QCA) model offers a novel nano-domain computing architecture by mapping the intended logic onto the lowest energy configuration of a collection of QCA cells, each with two possible ground states. A four-phased clocking scheme has been suggested to keep the computations at the ground state throughout the circuit. This clocking scheme, however, induces latency or delay in the transmission of information from input to output. In this paper, we study the interplay of computing error behavior with delay or latency of computation induced by the clocking scheme. Computing errors in QCA circuits can arise due to the failure of the clocking scheme to switch portions of the circuit to the ground state with change in input. Some of these non-ground states will result in output errors and some will not. The larger the size of each clocking zone, i.e., the greater the number of cells in each zone, the more the probability of computing errors. However, larger clocking zones imply faster propagation of information from input to output, i.e., reduced delay. Current QCA simulators compute just the ground state configuration of a QCA arrangement. In this paper, we offer an efficient method to compute the $N$-lowest energy modes of a clocked QCA circuit. We model the QCA cell arrangement in each zone using a graph-based probabilistic model, which is then transformed into a Markov tree structure defined over subsets of QCA cells. This tree structure allows us to compute the $N$-lowest energy configurations in an efficient manner by local message passing. We analyze the complexity of the model and show it to be polynomial in terms of the number of cells, assuming a finite neighborhood of influence for each QCA cell, which is usually the case. The overall low-energy spectrum of multiple clocking zones is constructed by concatenating the low-energy spectra of the individual clocking zones-. We demonstrate how the model can be used to study the tradeoff between switching errors and clocking zones.
机译:量子点细胞自动机(QCA)模型通过将预期逻辑映射到QCA电池集合的最低能量配置中,提供了一种新颖的纳米域计算体系结构,每个QCA电池具有两个可能的基态。已经提出了一种四阶段时钟方案,以使整个电路的计算保持在基态。然而,这种时钟方案在从输入到输出的信息传输中引起等待时间或延迟。在本文中,我们研究了时钟方案引起的计算错误行为与计算延迟或延迟之间的相互作用。 QCA电路中的计算错误可能是由于时钟方案无法通过输入变化将电路的某些部分切换到基态而引起的。这些非接地状态中的某些会导致输出错误,而某些不会。每个时钟区域的大小越大,即每个区域中的单元数越多,计算错误的可能性就越大。但是,较大的时钟区意味着信息从输入到输出的传播更快,即减少了延迟。当前的QCA仿真器仅计算QCA装置的基态配置。在本文中,我们提供了一种有效的方法来计算时钟QCA电路的$ N $最低能量模式。我们使用基于图的概率模型对每个区域中的QCA细胞排列进行建模,然后将其转换为在QCA细胞子集上定义的马尔可夫树结构。这种树结构使我们能够通过本地消息传递以有效方式计算$ N $最低的能量配置。我们分析了模型的复杂性,并假设其对每个QCA单元的影响是有限的,这在单元数方面显示为多项式,通常就是这种情况。多个时钟区的整体低能谱是通过串联各个时钟区的低能谱来构建的。我们演示了如何使用该模型来研究开关误差和时钟区域之间的折衷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号